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This paper proposes a new hybrid approach based on nonlinear chaotic dynamics and evolutionary strat-
egy to forecast electricity loads and prices. The main idea is to develop a new training or identification
stage in a nonlinear chaotic dynamic based predictor. In the training stage five optimal parameters for
a chaotic based predictor are searched through an optimization model based on evolutionary strategy.
The objective function of the optimization model is the mismatch minimization between the multi-
step-ahead forecasting of predictor and observed data such as it is done in identification problems.
The first contribution of this paper is that the proposed approach is capable of capturing the complex
dynamic of demand and price time series considered resulting in a more accuracy forecasting. The second
contribution is that the proposed approach run on-line manner, i.e. the optimal set of parameters and
prediction is executed automatically which can be used to prediction in real-time, it is an advantage in
comparison with other models, where the choice of their input parameters are carried out off-line, fol-
lowing qualitative/experience-based recipes. A case study of load and price forecasting is presented using
data from New England, Alberta, and Spain. A comparison with other methods such as autoregressive
integrated moving average (ARIMA) and artificial neural network (ANN) is shown. The results show that
the proposed approach provides a more accurate and effective forecasting than ARIMA and ANN methods.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate forecasting of the electricity demand and spot price is
essential in the operation of electric power system, especially in
deregulated electricity markets. Along with the forecasted electric-
ity prices, producers can develop bidding strategies to maximize
profits and minimize risks, while consumers can allocate purchases
between long-term bilateral contracts and spot markets. Accu-
rately forecasting electricity price and load demand are necessary
for investors to optimize portfolios [1]. Transmission congestion,
maintenance schedule of generation units, fuel or water supply,
etc., might affect the electricity price dramatically, complicating
the forecasting problem [1–3].

A number of papers dealing with short-term load forecasting
have been reported in [1,4–15]. Ref. [4] provides a comprehensive
review of many methodological issues and techniques which have
become innovative in addressing the problem of forecasting daily
loads. The range of approaches for generating forecasts includes
exponential smoothing [5] and neural networks [1,6]. Interesting
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approaches based on chaos theory were proposed in [7–16]. More
recently hybrid approaches have been proposed in [17,18].

A considerable number of techniques of forecasting day-ahead
prices are described in the literature. Techniques based on ARIMA
models were presented in [2,19,20]. Ref. [21] provides a compre-
hensive review of some main methodological issues and tech-
niques which have become innovative in addressing the problem
of forecasting daily loads and prices in the new competitive power
markets. In [1,22–24] neural network approaches were proposed
to forecast short-term electricity price. A GARCH forecasting model
to predict day-ahead electricity prices was proposed in [25]. An ap-
proach based on fuzzy classification was shown in [26], whereas
wavelet transform models were discussed in [27] and an interest-
ing hybrid approach is presented in [28]. Finally, models based on
chaos theory were presented in [29–33].

Some believe that electricity demand seems random, but some
believe that it seems chaotic, due to the influence of many compli-
cated facts such as temperature, price of electricity and many other
factors [7–16]. Similarly the price of electricity depends on the
supply and demand of the market and the operating conditions
of the transmission network, which are influenced by many factors,
such as the climate, the economic situation, the planning for devel-
opment, accidents and failure [29–33]. The joint effect of these fac-
tors results in complicated dynamics of electricity demand and
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Nomenclature

Indexes
N length of historical time series
M number of desired steps-ahead prediction
nTr dimension of the training set vector

Parameters
l number of parents used in evolutionary strategy (ES)
c number of offspring used in ES
S vector of the time series data values
ŷz;i real value of time series
r standard deviation vector
TSD historical time series data (an N � 1 vector dimension)
SSR the state space reconstruction set
TRN the training set

Variables
x vector of variables correspondent to input parameters of

PREDICT2

xj input parameter j of PREDICT2
xmax, xmin maximum and minimum limits of vector of variables

correspondent to input parameters of PREDICT2
m dimensionality of embedding space
s time delay
k size of the local neighborhood
k the Euclidian distance metric
RF type of regression functions of local constant models

or method of computing the prediction output
yz;i prediction value of time series
Outputi the ðnTr � 1Þ column vector whose elements ŷz;i are

the nTr-step-ahead prediction results, using PREDICT2
associated to ith individual candidate
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price. Usually statistics methods are employed to develop forecast-
ing models for electricity price and load.

Recent developments in nonlinear dynamics have demon-
strated that irregular or random behavior in natural systems may
arise from purely deterministic dynamics with unstable trajecto-
ries. Even though some observations might appear random, there
may exist an order or pattern beneath such an appearance. Such
types of nonlinear dynamical systems, which are also highly sensi-
tive to initial conditions, are known as chaotic systems [34,35].
Furthermore, if the seemingly random evolution of the electricity
demand or price also possesses a chaotic trait, the theory of prob-
ability and statistics is not accurate enough to study both as a sto-
chastic variable [7–16,29–35]. Instead, the chaos theory can be
used to reveal its intrinsic regularity until more accurate and ra-
tional analysis results and prediction models are obtained [7–
16,29–35].

The quality of a forecaster based on chaotic dynamics is highly
dependent on parameters of the time series dynamics. Generally
the parameters are assessed at the system characterization stage.
Regarding forecasting precision, most of the chaos based methods
have good performance for short-term chaotic time series forecast-
ing. On the other hand, for stochastic time series and time chaotic
series under high embedding dimension, the chaos based methods
do not present a good behavior. Thus, a judicious time series anal-
ysis and/or hybridization with other methods are necessary to im-
prove the time series forecasting to any kind of time series.

This paper presents a novel hybrid nonlinear chaotic dynamic
and evolutionary strategy-based approach for multi-step-ahead
time series forecasting. The fundamental and novel contribution
of the paper is the insertion of a new training or identification stage
into a nonlinear chaotic dynamic based predictor. In this training
stage, five optimal parameters for a nonlinear chaotic dynamic
based predictor are searched through an optimization model based
on evolutionary strategy. Hence a common identification objective
is used to minimize the mismatch between model prediction and
observed data. For this purpose, an optimal time series identifica-
tion stage is developed to find a model with good prediction capa-
bilities. Thus, this paper proposes a new robust hybrid model for
multi-step ahead prediction of time series regardless if the time
series follows a chaotic, stochastic, and/or any other type of dy-
namic behavior.

The proposed approach is applied for multi-step ahead predic-
tion of load and price and it is also compared with traditional tech-
niques like ARIMA and ANN models. The load and electricity price
data of New England, Alberta, and mainland Spain are used to cor-
roborate the ideas and to obtain the results.

The paper is organized as follows: Section 2 provide the details
of the proposed hybrid nonlinear chaotic dynamics and evolution-
ary strategy based approach, Section 3 presents numerical results
of the simulations and Section 4 discusses the conclusion.
2. An hybrid approach based on nonlinear chaotic dynamic and
evolutionary strategy

2.1. Times series prediction by chaotic nonlinear dynamics

The theoretical fundaments of times series forecasting using
chaotic nonlinear dynamic methodologies is out of scope of this
paper. The interested reader is referred to [34,35] for a better
discussion.

A landmark in the chaos signal processing was made with the
origin of embedding theorem of Takens [34,35]. This theorem ex-
plored the time-lagged vectors to realize the underlying dynamics,
whereby, a dynamic of a real process result in a time series
gðtÞ ¼ fgðt0 þ nsÞg is sampled at intervals s and initiated at t0.
Consider a dynamical system with a m-dimensional space and an
evolving solution gðtÞ. For some observation, the lag vector can
be defined as:

gðtÞ � gt ;gt�s1
;gt�s2

;gt�s3
; . . . ;gt�sm�1

n o
: ð1Þ

Then, under general conditions, the space of vectors gðtÞ gener-
ated by the dynamics contains all of the information of the space of
solution vectors gðtÞ. The mapping between them is smooth and
invertible. This property is referred to as the embedding theorem.
Thus, the study of the time series gðtÞ is also the study of the solu-
tions of the underlying dynamical system gðtÞ through a particular
coordinate system given by the observable g.

The embedding theorem establishes that, given a scalar time
series from a dynamical system, it is possible to reconstruct a
phase space from this single variable, that is, in theory, an embed-
ded space with dimensions consisting of various time lags of the
variable itself. The embedded space can also be created from many
dynamic variables. According to the embedding theorem, the
underlying structure cannot be seen in the space of the original
scalar time series, rather only when unfolded into an embedded
(or phase) space. Time series can correspondingly be forecasted
based on this structure in the phase space. The purpose of the
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forecasting is to predict the state of the system gðtÞ at a time hori-
zon T in the future gðt þ TÞ.

The vector on Eq. (1) represents the nonlinear dynamics in its
entity when the embedding dimension m is large enough and the
selection of the time delay s is appropriate. For a good approximate
first guess, the values would give a feeling on the efficiency of the
embedding dimension. There are many methods available to esti-
mate m and s. Typically, the selection of m is based on the concept
of average mutual information (AMI) and m using false nearest
neighbor (FNN) analyses [34,35].

When the ‘‘optimal” estimate of m and s is identified, the phase
space H is reconstructed with the elements of gðtÞ. The prediction
model can then be built in this m-dimensional space.

gðt þ TÞ ¼ gTðgðtÞÞ; ð2Þ

where the lag vector gðtÞ is the current state of the system. gðt þ TÞ
is the system state in a forecast horizon interval of T and gT is a
mapping function. The problem now is limited to find a good
expression for gT . In the local model, gðtÞ is evaluated among only
the most similar points which are locally present near the forecast
point. The sub-phase space is identified from the historical time ser-
ies by choosing the k nearest neighboring points within the m-
dimensional space, H. The neighbors can be chosen either within
a circle of constant radius (distance) from the forecast point or by
specifying the number of nearest neighbors k. There are many algo-
rithms to find the k nearest neighbors in a m-dimensional space
occurring in nonlinear time-series analysis, especially for modeling
and prediction of time series via time-delay reconstruction. For this
purpose, fast nearest neighbor (FNN) searching algorithms have
been proposed in [36,37].

Having constructed the phase space and pooled the most simi-
lar events in the past corresponding to the present time horizon, T,
the desired expected (forecast) value vector, XðtÞ is formed for
each point in the neighborhood domain, say H0 where H0 2 H. The
regression is performed using the neighborhood coordinates in
the sub-domain H0ðÞ as inputs, and their corresponding expected
values XðtÞ as outputs.

2.2. Chaotic dynamics models in times series prediction

The accuracy of nonlinear local dynamics models approxima-
tion and resulting forecast depend on many factors, such as dimen-
sionality of embedding space ðmÞ, size of the local neighborhood
ðkÞ, time delay ðsÞ, the Euclidian distance metric ðkÞ, of the nearest
trajectory algorithms, the type of regression functions ðRFÞ of local
constant models or method of computing the prediction output
[34,35].

State space reconstruction using the time delay coordinate
method is clearly common to both system characterization and
prediction. Conventionally, it is assumed that the state space
parameters m and s for forecasting are the same as those estimated
using AMI and FNN method, respectively, for system characteriza-
tion purposes. Similarly, the choice to k ¼ mþ 1, is often used
[34,35]. The k value is commonly fixed at 1 and the type of regres-
sion function ðRFÞ is pre-established before the forecasting stage.
Such local dynamics parameters provide robust, but in principle
at least sub-optimal choices of embedding parameters, thus result-
ing in a sub-optimal embedding properties as well as a sub-opti-
mal forecast skill [38,39].

The above consideration would be justified and motivated,
since there are no rigorous or foolproof criteria to validate the pres-
ence of chaos in real time series. In addition, there are no criteria to
evaluate state space parameters precisely and reliably. Many of
these criteria are developed based on the assumptions that the
time series is sampled at sufficient resolution, not corrupted by
noise, and measured over a sufficiently long period of time, which
may not be valid in practice. It suffices to say that the limitations of
existing criteria for system characterization permit a fairly large
degree of latitude in the selection of the appropriate state space
parameters. Linking forecasting with system characterization will
certainly propagate this uncertainty and affect prediction accuracy
[38,39].

The above discussion suggests that it may be more practical to
select all the parameters together during the forecasting stage. If
the parameters are selected to produce optimum prediction accu-
racy, then such a direct approach will at least be as accurate as the
standard approach as far as forecasting is concerned. From a prag-
matic engineering point of view, such a selection procedure for
state space parameters is also highly desirable, because accurate
prediction is usually the primary motivation for developing engi-
neering models in the first place. Hence an optimal time series
identification stage is necessary to identify a model with good pre-
diction capability [38,39].

Thus, in this paper the insertion of a new training stage in a
nonlinear chaotic dynamic based predictor (PREDICT2) [37] is pro-
posed to improve the time series modeling and forecasting. This
training stage consists in finding five optimal parameters of PRE-
DICT2 using evolutionary strategy.

PREDICT2 is a code of a free software package for signal process-
ing with emphasis on nonlinear time-series analysis (TSTOOL) [40].
Such a function is a state space based prediction using nearest
neighbors. The algorithm computes one or more nearest neighbors
to an initial state vector. The images of the nearest neighbors are
used to estimate to image of the initial state vector [40].

The syntax of PREDICT2 is as follows:

Output ¼ PREDICT2ðS; nTr;m; s; k; k;RFÞ ð3Þ

RF variable represents the regression function type alternatives and
its numerical equivalence (correspondence) would takes integer
values from 0 to 3 [40]: RF ¼ 0 (i.e. when the output vectors repre-
sent the mean of the images of the nearest neighbors), RF ¼ 1 (i.e.
when the output vectors represent the distance weighted mean of
the images of the nearest neighbors), RF ¼ 2 (i.e. when the output
vectors based on the local flow uses the mean of the images of
the neighbors), RF ¼ 3 (i.e. when the output vectors based on the
local flow uses the weighted mean of the images of the neighbors).

The nTr value is the multi-ahead-step prediction length
(number of output values) and S is the time series data values.
Finally, Output is the set of nTr forecast values which in the next
section this variable is renamed as dimension of the training set
vector.

2.3. The hybrid PREDICT2 and evolutionary strategy (ES) based
approach to times series forecasting

In this paper, a hybrid approach, which combines the predictor
PREDICT2 with Evolutionary Strategy (ES) to improve the quality of
time series forecasting is proposed. A new training or identification
stage, which selects all the five PREDICT2 prediction parameters m,
s, k, k and RF is proposed to optimize the prediction accuracy. The
training stage is an optimization process, where the constraints are
the same as those associated with the PREDICT2 problem and the
objective function is to minimize the mismatch between model
prediction and the observed data.

Evolutionary strategies belong to the wide class of evolutionary
computation algorithms. Briefly, they consist in selecting a set of l
candidates for the solution of the optimization problem and apply-
ing the rules of evolution until an optimal solution is obtained. A
typical candidate or individual consists of a pair of vectors, one
containing the parametric solution of the system (x) and another
containing a vector of standard deviations ðrÞ which controls the
evolution of the individual in the subsequent steps. These initial
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candidates conforms the parent population ð!Þ. From these l solu-
tions a batch of c offspring are generated according to the mecha-
nisms of recombination and mutation, as described next. These
solutions are then evaluated according to the fitness function or
an optimization criterion and they are ranked from best to worst.
The best ones are chosen following a selection method to form
the next parent population, and the process is iterated. The main
advantages of this method are the low sensitivity to initial esti-
mates and the ability to escape from local minima. For further de-
tails on the workings of evolutionary strategies, the reader should
refer to [41].

Before starting the evolutionary strategy algorithm, it is neces-
sary to establish the search space. The search space W is defined by
a set of maximum and minimum values for each parameter. It con-
ceives an n-dimensional domain delimited by vectors xmax and xmin

containing the upper and lower bounds of the n parameters,
respectively:

W ¼ x 2 Rnjxmin;j 6 xj 6 xmax;j; j ¼ 1; . . . ;n
� �

: ð4Þ

In this paper,

x ¼ ½m s k k RF�: ð5Þ

Because these parameters are the input to PREDICT2, they have the
following constraints of maximum and minimum values:

xmax ¼ ½50 50 50 1 3�; ð6Þ
xmin ¼ ½1 1 1 0:1 0�: ð7Þ

According to the general scheme, the description of PREDICT2 and
ES based algorithm proposed in this paper is given by the following
steps.

(1) Population initialization: This is carried out picking l individ-
uals at random from the search space W as defined in (4).
The initial parent population matrix with ðl� 5Þ dimension
is defined by: ! ¼ ðxi;j;ri;jÞ for i ¼ 1;2; . . . ;l and
j ¼ 1; 2; . . . ; 5, where:
xi;j ¼ xmin;j þ Ui;jð0;1Þðxmax;j � xmin;jÞ ð8Þ

ri;j ¼ xi;j � xmin;j þ
xmax;j � xmin;j

2

� ���� ��� 1ffiffiffi
5
p ð9Þ

where Ui;jð0;1Þ denotes a random variable of uniform distri-
bution in the interval [01] that is sampled for each parame-
ter. The initial values of the standard deviations are
obtained as ri;j ¼

Dxijffiffi
5
p where Dxij denotes the estimated para-

metric distance to the optimum, which should lie in the mid-
dle of the parameter search range.
(2) Recombination: The kind of recombination used in this paper
is the global discrete recombination [41], where the offspring
solution inherits its components from any of the parents.
Thus, each of the l parents has 1=l chances of being
selected to contribute to each component of the new indi-
vidual offspring solution. Therefore, a jth new component
associated with a qth new individual is produced choosing
randomly one element from all positions (l rows) of the
jth column of population matrix, as follows:
xq;j ¼ rand

xi;j

..

.

xl;j

2
664

3
775; j ¼ 1; . . . ;5; q ¼ 1; . . . ; c ð10Þ

rq;j ¼ rand

ri;j

..

.

rl;j

2
664

3
775; j ¼ 1; . . . ;5; q ¼ 1; . . . ; c; ð11Þ
where rand½:� returns an element chosen randomly and c is
the offspring population size.
(3) Mutation: Mutation consists of slight perturbations in the
parameters of the individual offspring after they have been
generated by the recombination procedure. Thus in this
stage, the c offspring are mutated using Gaussian mutation.
The ri;j standard deviations are mutated first and then the
object variables xi;j, according to the following expressions:
r0q;j ¼ r0q;j expðb0Nð0;1Þ þ bNqð0;1ÞÞ; j ¼ 1; . . . ;5;

q ¼ 1; . . . ; c; ð12Þ

where Nð0;1Þ and Nqð0;1Þ represents a Gaussian random
number with mean 0 and variance, b0 ¼ ð

ffiffiffiffiffiffi
4n4
p
Þ�1;

b ¼ ð
ffiffiffiffiffiffi
2n
p
Þ�1.Hence the variations of the parameters m, s, k

and RF are in an integer discrete values form. Then:

x0q;j ¼ round xq;j þr0q;jNð0;1Þ
� �

; j ¼ 1; 2; 3; 5; q ¼ 1; . . . ;c;

ð13Þ

k varies in continuous values form. Then:

x0q;j ¼ xq;j þ r0q;jNð0;1Þ; j ¼ 4; q ¼ 1; . . . ; c ð14Þ
(4) Fitness evaluation and selection: The fitness function for eval-
uating the fitness of each individual in the population must
be defined. Hence a common identification objective is used
to minimize the mismatch between model prediction and
the observed data. This paper uses the error prediction
between the output of PREDICT2 and the observed data.
Thus the prediction result of PREDICT2 associated with each
individual in the population is
Outputi ¼

ŷ1;i

..

.

ŷz;i

..

.

ŷnTr;i

2
666666664

3
777777775
¼ PREDCIT2ðS;nTr;xiÞ; i ¼ 1; . . . ;lþ c:

ð15Þ
where Outputi is a ðnTr � 1Þ column vector whose elements
ŷz;i are the nTr-step-ahead prediction results using PREDICT2
associated to ith individual. S is ðN � nTr � 1Þ column vector
whose elements are time series data. N is the number of ele-
ments of time series input data and nTr is the number of
training data points considered.Thus the fitness function con-
sidered in this paper is the mean absolute percentage error
(MAPE). The fitness value in (%) Fitness for ith individual of
the offspring population is given by,

Fitnessi ¼ 100
nTr

XnTr

z¼1

yz;i � ŷz;i

yz;i

����
����; i ¼ 1; . . . ;lþ c ð16Þ

where ŷz;i is the observed value. The evolution strategy
ðlþ cÞ-ES [41] is used. In this class of strategy, after applying
the mutation operator, a new batch of offspring is obtained. In
this paper elitist selection operator is used. Elitism dictates
that the old parent individuals will be pooled together with
the new offspring individuals and then the ranking of all
lþ c individuals will be performed according to their fitness
value. The best-fitted l individuals, selected from the pool,
will substitute the old parent population.
(5) Termination: In order to halt the evolutionary process and to
accept the best found individual as the solution to the opti-
mization problem, one or several criteria have to be estab-
lished. Often, convergence is imposed on evolutionary
algorithms by setting an external parameter of a maximum
number of generations.



112 C. Unsihuay-Vila et al. / Electrical Power and Energy Systems 32 (2010) 108–116
2.4. Summary of the PREDICT2-ES algorithm

The proposed approach PREDICT2-ES has been developed for
multi-ahead step prediction (M-ahead step). The input data to
the proposed model is a historical time series data (TSD), an
N � 1 vector dimension. For example a M-step-ahead prediction
using the proposed approach is desired. Then the TSD is divided
in two adjoining segments. The first segment is used to recon-
struct the state space for predicting the data in the second seg-
ment. These two segments are named as the state space
reconstruction set (SSR), a ðN � nTrÞ � 1 vector dimension and
training set (TRN) a ðnTr � 1Þ vector dimension, respectively. No-
tice that at the training stage there is no overfitting problem,
since the dimension of the training set vector ðnTrÞ of each indi-
vidual is much greater than 1. Hence, in this paper is being
trained the multi-step-ahead prediction ability of PREDICT2. The
optimal value for nTr must be fixed before going to the prediction
process. However, the optimal value for nTr must be determined.
In this paper an empirical value for nTr is given as nTr ¼ KM,
where M is the number of steps-ahead desired to forecast, and
K is a discrete positive number ranging from 1 to M. After many
sensitivity tests varying the K values, it was observed that an
appropriate choice for the training dimension set vector ðnTrÞ
was twice the desired M-step-ahead prediction. That is, for
K ¼ 2 the prediction error (MAPE) was smaller than for other val-
ues of K. Thus in this paper, nTr ¼ 2M, and M is equal to 168 h,
which means that nTr ¼ 336.

As explained above, in fact the proposed approach is mainly for
multi-step (long-range) application forecasting. The one-step-
ahead prediction can be considered here as a simplified case, hence
the one-step-ahead prediction is a sub problem of the multi-step-
ahead prediction.

Next the proposed evolutionary strategy optimization algo-
rithm is then used to tune the prediction parameters so that the
calibration set can be predicted from the state space reconstruction
set with maximum accuracy.

Fig. 1 shows the flowchart of the M-step-ahead prediction pro-
cedure of times series using the proposed PREDICT2-ES approach:
Fig. 1. Flowchart of the proposed PREDICT2-ES approach.
� Read the TSD (N � 1 vector dimension).
� Divide the time series data in two sets: The TRN set is a 2M � 1

vector dimension, whose elements are obtained from
N � 2M þ 1 to N position of TSD column vector. The SSR set is
a ðN � 2MÞ � 1 column vector whose elements are obtained
from 1 to N � 2M position of TSD column vector.

� Obtain optimal parameters to PREDICT2 using the evolutionary
strategy proposed algorithm: A maximum number of genera-
tions of 100, l ¼ 5 and c ¼ 1 are settled in this paper for all
cases. Then, ŷ ¼ TRN.

� Update PREDICT2 input: SSR is an N � 1 vector dimension. Then
obtain the M-step-ahead prediction using PREDICT2 considering
optimal parameters obtained in the above step.

The multi-ahead prediction error of the proposed approach can
be evaluated using the M real values.

2.5. Final considerations

In summary, the approach involves the selection of all predic-
tion parameters of a nonlinear chaotic dynamic based predictor
PREDICT2 at the forecasting stage rather than at the system char-
acterization stage. A simple and efficient evolutionary strategy is
used to find five optimal prediction parameters so that the training
set can be predicted from a state space reconstruction set with
optimal accuracy.

The proposed hybrid approach PREDICT2-ES is more logical
than the standard approach for two reasons. First, system charac-
terization should be relegated to a supporting/ verification role be-
cause there are neither necessary nor sufficient conditions
available at present to unequivocally identify chaos [38,39]. Exist-
ing selection criteria also allow fairly wide latitude in the choice of
state space parameters for system characterization. Even if these
diverse selection criteria produce similar results, it is still uncertain
how such convergence will lead to an accurate prediction. It is
more sensitive to use prediction accuracy as a unifying criterion
for parameter selection that has direct engineering significance.
Second, the standard approach implicitly assumes that a single
set of state space parameters is applicable to both system charac-
terization and forecasting [39].

The proposed new training stage performs well regardless the
time series follows chaotic or stochastic behavior, or even presents
other patterns of dynamics behavior. As a consequence, the pro-
posed approach PREDICT2-ES is capable of effectively capturing
the complex dynamic of time series considered. In real time series,
this dynamic complex is unknown and it can be any chaotic, sto-
chastic, etc, or a combination of them. However, the technique re-
ported in this paper is restricted to predict times series including
no strong spikes. If the times series under consideration suffers
from cyclical occurrence of spikes, specific procedures to estimate
such strong spikes are required.

An additional advantage of the proposed approach is its running
on-line manner, since the search of the optimal parameters and
prediction are executed automatically. It is an improved manner
in comparison with the ARIMA and ANN-based models, where
the choice of their input parameters are carried out off-line, follow-
ing qualitative/experience-based recipes.
3. Experiments, results and comparisons

The proposed approach PREDICT2-ES is applied for multi-step
ahead prediction of the electricity demand of the New England
and Alberta market. The New England data set consists of hourly
electricity loads from January 1, 2002 through December 31,
2002 [42], whereas Alberta data set consists of hourly electricity
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loads from January 1, 2004, to December 31, 2004 [44]. PREDICT2-
ES is also applied for multi-step ahead prediction of the electricity
price of the New England and Spanish market. The New England
data set consists of hourly electricity prices from January 1, 2002
through December 31, 2002 [43], whereas Spanish data set con-
sists of hourly electricity prices from January 1, 2004 to December
31, 2004 [44]. The results of PREDICT2-ES are compared with the
best results obtained by ARIMA and ANN models by using the com-
mercial software Statistica [45].

3.1. ARIMA

The autoregressive integrated moving average (ARIMA) meth-
odology developed by Box and Jenkins [46] has gained enormous
popularity in many areas and research practice confirms its power
and flexibility. The methodology is recursive and requires some
expertise and knowledge to obtain the right model. In summary,
the ARIMA methodology has the following main processes:

� Identification: Consists of identifying which models best fit the
time series behavior. In ARIMA ðp; d; qÞðP;D;QÞS; d and D are
the order of the nonseasonal and seasonal differences, respec-
tively, p and P represents the order of the nonseasonal and sea-
sonal autoregressive term, and q and Q represent the order of the
nonseasonal and seasonal moving average terms. The seasonal
difference is represented by the S lag. The main tools used in this
process are the autocorrelation (ACF) and partial autocorrelation
(PACF) functions.

� Verification: Consists of evaluating whether the estimated model
is adequate to describe the time series behavior. Several differ-
ent models were tested for the electricity time series using the
program Statistica [45]. In all of the obtained models a daily sea-
sonality of lag = 24 and a weekly difference of lag = 168 was
obtained from the ACF and PACF graphs. A model ARIMA
(1,1,0) (0,0,1) was enough to present a reasonable margin of
error for forecasting most of the time. In general, the ARIMA
model gives better results when compared to regression models
but it has a drawback related to the time-varying variance, as
well as a problem when heteroscedasticity is present.
3.2. ANN

The following characteristics were addressed for the time series
prediction and a great number of simulations were necessary to
estimate reasonable ANNs for this specific problem. Design of
experiments (DOE) was the main tool to conduct the training of
the ANNs [47]. The procedure adopted in this paper related to
the use of ANN, can be summarized as:

Type of problem: Generally a time series forecasting problem
using ANN can be addressed with two different strategies (accord-
ing to the method of training and the number of variables to be
considered for the ANN). The first strategy consists of using ANN
for a specific problem of time series. In this case, the ANN training
considers past values as input and forecast values as response.
Here, the definition of seasonality is a very important point for
the convergence of the ANN training. Usually the number of neu-
rons of the input layer is determined by seasonality. The second
method consists of making the series prediction using the data as
a regression problem. In this case, explanatory variables are used.
Usually the number of past values is small, not directly related to
the seasonality lag, but there are extra time series that try to ex-
plain the presence of seasonality. The simulations pursued the best
ANN for most of the time series, but the outcome showed that no
single ANN could represent the behavior of all time series. For a
great number of points, the seasonality is better estimated when
an ANN is used as a time series problem.
� Stopping Criteria: Two criteria were tested on the ANN training –
Minimal error and error against diversity. Minimal error has the
tendency to be better once the ANN is well defined. Error against
diversity is indicated when the simulation is exploratory.

� ANN’s architecture: Multilayer feed forward and radial basis
function ANNs were tested. It is hard to generalize the best
architecture, and trial and error is in fact a common procedure
in spite of a great number of theoretical procedures available.

� Sampling techniques: The respective amounts of data for training,
selection and testing were established under the rule (2:1:1).

� Complexity: The number of layers and neurons is one of the most
difficult problems to be estimated when training an ANN. A
mechanism called Grid Search based on Genetic Algorithm
was utilized most of the time to optimize the mentioned num-
ber for each time series.

� Seasonality: The number of lags for training the ANNs can be
obtained using fast Fourier transform and autocorrelation func-
tions. Usually, lags 24 and 168, representing a daily and week
seasonality were considered.

� Activation functions: For all time series the sigmoid function was
considered the standard for all time series.

� The ANNs were obtained using the software Statistica with its
user-friendly toolbox of neural network. The software was con-
sidered an excellent resource for short-term forecasting (espe-
cially when automated features are necessary). Some features
such as Grid Search and Data Mining are valuable tools for esti-
mating the ANN.

3.3. Results and comparisons

Table 1 presents the comparative electricity market forecasting
results employing the proposed PREDICT2-ES approach and the
traditional ANN and ARIMA methods. The hourly data set used
for training and testing consider the four seasons and an exclusive
168 step ahead time series representing a week interval during
each season. These 168 points were not used during the training
phase. In attempting to make a fair comparison, the fourth week
of February, May, August, and October were selected. This account-
ing for reality results in an uneven accuracy distribution through-
out the year. To assess the prediction capacity of the PREDICT2-ES,
ARIMA and ANN model, the average prediction error was com-
puted using the traditional mean absolute percentage error
(MAPE), given as:

MAPE ð%Þ ¼ 100
H

XH

h¼1

Ph � bPh

Ph

�����
�����; ð17Þ

where H ¼ 168, and Ph and bPh are the respective actual and fore-
casted hourly load or prices.

The Model column reveals the obtained prediction model for
the three employed methods, as follows:

(i) The ARIMA model reveals the (p, d, q) (P, D, Q) parameters
already described on Section 3.1.

(ii) The profile of the network architecture is described by the
form In:H–H–H:Ou, where In is the number of input vari-
able, Ou the number of output variables, and H the number
of units in each layer. Example: 2:4–6–3:1 indicates a net-
work with 2 input variables, 1 output variable, 4 input neu-
rons, 6 hidden neurons, and 3 output neurons. For a time
series network, the steps factor is prep ended to the profile,
and signified by an s. Example: s10 1:10–2–1:1 indicates a
time series network with steps factor (lagged input) 10.

(iii) The PREDICT-ES reveals the optimal parameters x ¼
ðm s k k RFÞ described on Section 2.2.



Table 1
Weekly forecasting error comparison for the analyzed cases.

Electricity market Data type Season Data set training Data set test Method Model MAPE

New England Load Winter 1/1/2002–2/15/2002 2/16/2002–2/22/2002 ARIMA (1,1,3)(1,0,0) 5.560
ANN RBF s168 1:168-261-1:1 7.470
PREDICT2-ES (20, 10, 15, 1, 3) 2.685

Spring 1/1/2002–5/10/2002 5/11/2002–5/17/2002 ARIMA (1, 1, 3) (5, 0, 0) 2.740
ANN MLP s168 1:168-7-1:1 5.330
PREDICT2-ES (21, 25,15, 1, 3) 1.765

Summer 1/1/2002–8/15/2002 8/16/2002–8/22/2002 ARIMA (1, 1, 3) (6, 0, 0) 14.430
ANN MLP s168 1:168-7-1:1 9.150
PREDICT2-ES (30, 17, 20, 1, 3) 4.156

Fall 1/1/2002–10/25/2002 10/25/2002–10/31/2002 ARIMA (1, 1, 2) (3, 0, 0) 3.790
ANN MLP s168 1:168-8-1:1 3.200
PREDICT2-ES (28, 7, 8, 0.865640, 3) 2.087

New England Price Winter 1/1/2002–2/15/2002 2/16/2002–2/22/2002 ARIMA (1,1,0)(1,0,1) 13.360
ANN MLP 168 1:168-3-1:1 14.120
PREDICT2-ES (17, 6, 9, 0.834833, 0) 8.127

Spring 1/1/2002–5/10/2002 5/11/2002–5/17/2002 ARIMA (1, 1, 3) (2, 0, 2) 13.310
ANN RBF 168 1:168-40-1:1 13.280
PREDICT2-ES (12, 20, 13, 0.991530, 2) 10.632

Summer 1/1/2002–8/15/2002 8/16/2002–8/22/2002 ARIMA (1, 1, 1)(1, 0, 2) 38.800
ANN MLP 168 1:168-9-1:1 27.130
PREDICT2-ES (10, 3, 13, 0.738849, 1) 15.103

Fall 1/1/2002–10/25/2002 10/25/2002–10/31/2002 ARIMA (1, 1, 1) (1, 0, 0) 12.740
ANN RBF s168 1:168-12-1:1 9.740
PREDICT2-ES (23, 11, 11, 0.968260, 2) 9.418

Alberta Load Winter 1/1/2004–2/15/2004 2/16/2004–2/22/2004 ARIMA (1, 1, 1)(3, 0, 0) 1.440
ANN MLP s168 1:168-8-1:1 2.130
PREDICT2-ES (30, 20, 12, 1, 2) 0.945

Spring 1/1/2004–5/10/2004 5/11/2004–5/17/2004 ARIMA (1, 1, 1) (1, 0, 1) 1.070
ANN RBF 168 1:168-25-1:1 1.100
PREDICT2-ES (26, 15 4, 0.894527, 2) 0.812

Summer 1/1/2004–8/15/2004 8/16/2004–8/22/2004 ARIMA (1, 1, 0) (2, 0, 0) 2.540
ANN MLP s168 1:168-10-1:1 2.130
PREDICT2-ES (21, 10, 3, 1, 3) 1.272

Fall 1/1/2004–10/25/2004 10/25/2004–10/31/2004 ARIMA (1, 1, 0) (3, 0, 0) 1.500
ANN RBF s168 1:168-24-1:1 0.820
PREDICT2-ES (15, 19, 5, 0.938630, 2) 0.745

Spain Price Winter 1/1/2004–2/15/2004 2/16/2004–2/22/2004 ARIMA (1,1,0)(1,0,0) 15.030
ANN RBF s168 1:168-276-1:1 10.490
PREDICT2-ES (23, 2, 13, 0.944092, 1) 7.638

Spring 1/1/2004–5/10/2004 5/11/2004–5/17/2004 ARIMA (1, 1, 1) (1, 0, 1) 14.790
ANN RBF s168 1:168-284-1:1 25.450
PREDICT2-ES (30, 29, 11, 1, 1) 10.519

Summer 1/1/2004–8/15/2004 8/16/2004–8/22/2004 ARIMA (1, 1, 1) (2, 0, 0) 8.730
ANN MLP s168 1:168-7-1:1 8.720
PREDICT2-ES (29, 22, 13, 0.941816, 2) 8.691

Fall 1/1/2004–10/25/2004 10/25/2004–10/31/2004 ARIMA (2, 1, 0) (2, 0, 0) 21.360
ANN RBF s168 1:168-284-1:1 11.180
PREDICT2-ES (26, 18, 10, 0.998016, 2) 10.797
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From Table 1 it was found that the proposed approach PRE-
DICT2-ES was able to outperform ARIMA and ANN models for all
scenarios considering MAPE.

The well-known statistical paired t hypotheses test is appropri-
ated for testing the mean difference between paired observations
when the paired differences follow a normal distribution. It is used
to compute a confidence interval and perform a hypothesis test of
the mean difference between paired observations in the population.
A paired t-test matches responses that are dependent or related in a
pairwise manner. This matching allows one to account for variabil-
ity between the pairs usually resulting in a smaller error term, thus
increasing the sensitivity of the hypothesis test or confidence inter-
val. p-Values are often used in hypothesis tests where one either ac-
cepts or rejects a null hypothesis. The p-value represents the
probability of making a Type 1 error, or rejecting the null hypothe-
sis when it is true. The smaller the p-value, the smaller is the prob-
ability that you would be making a mistake by rejecting the null
hypothesis. A cutoff value often used is 0.05, that is, reject the null
hypothesis when the p-value is less than 0.05. Here, the null
hypothesis is that the methods are equal and the paired t-test
(one tail) presents p-value < 0.01 comparing PREDICT2-ES against
ANN and also against ARIMA. ANN and ARIMA were found not to
be statistically different using a paired t-test (p-value > 0.1).

The boxplots display graphically patterns of variation. It is used
to identify families of variation, such as variation within a sub-
group, between subgroups. The spread gives you some idea of
the variation. Figs. 2 and 3 show the boxplots for the considered
markets and seasons. As shown in those figures, PREDICT2-ES error
was significantly smaller in terms of MAPE than those obtained by
ARIMA and ANN models in all markets and seasons. It was noted
that spot prices caused mild spikes and the time series did not fol-
low a well-defined pattern, making forecasting very complicated.
Despite that, the forecasting results of PREDICT2-ES were more
accurate than the ARIMA and ANN methods. In all seasons PRE-
DICT2-ES method outperformed ANN and ARIMA. For the fall per-
iod ANN and PREDICT2-ES present similar results. It was also
noticed that the summer week cases presented unstable behavior,
making forecasting hard. Nevertheless one can see how the fore-
cast obtained from the PREDICT2-ES was able to successfully pre-
dict the trend of the 168-step-ahead time series.
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Fig. 2. Boxplots of MAPE of markets.
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Fig. 3. Boxplots of MAPE of seasons.

Fig. 4. Summer week: Actual loads and PREDICT2-ES estimates in megawatt- New
England Market.
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In Fig. 4, it can be seen that the summer week load case of New
England market was also unstable, making forecasting hard. De-
spite that, one can see how the load forecast obtained from the
PREDICT2-ES approach is able to successfully predict the trend of
the 168-step ahead real load. Even so, the performance of the PRE-
DICT2-ES technique for the summer is very good, with a weekly er-
ror below 4.156%. Weekly error for the ARIMA and ANN technique
is below 14.430% and 9.150%, respectively. Analyzing the different
plots represented in Figs. 2 and 3 and Table 1, it can be concluded
that the performance of the proposed technique is superior to the
performance of the ARIMA and ANN methods. These experimental
results confirm the notion that in this case the combined chaotic
dynamic model and evolutionary strategy optimization capture
more effectively the demand and prices time series dynamics.
The superior predicting behavior of the proposed technique is
apparent in all the weeks analyzed.

The proposed PREDICT2-ES was implemented in Matlab lan-
guage. The CPU running time, including training and forecasting,
was below two minutes for each one of the cases presented. All
the results were obtained on a 2.80 GHz Pentium IV PC with
960 MB of RAM.

As a further investigation we have to compare the method
against others ANN methods besides MLPs and RBF’s, used in this
study.
4. Conclusions

A hybrid approach which combines nonlinear chaotic dynamics
and evolutionary strategy techniques was presented and applied to
short-term load and day-ahead electricity price forecasting. The
main idea is developing a new training or identification stage to
a nonlinear chaotic dynamic based predictor, in such away that
the time series modeling and forecasting are improved signifi-
cantly. In this training stage, five optimal parameters for a nonlin-
ear chaotic dynamic based predictor are searched through an
optimization model based on evolutionary strategy. Hence a com-
mon identification objective is to minimize the mismatch between
model prediction and observed data, and then it is used as the
objective function in the optimization model based on evolution-
ary strategy.

The proposed approach PREDICT2-ES is capable of effectively
capturing the complex dynamic (without strong spikes) of time
series, since in real time series, this dynamic complex is unknown
i.e. it can be any chaotic, stochastic, etc., or a combination of them.
An additional advantage of the proposed approach is its running
on-line manner, since the search of the optimal parameters and
prediction are executed automatically. It is an improved manner
in comparison with the ARIMA and ANN-based models, where
the choice of their input parameters are carried out off-line, follow-
ing qualitative/experience-based recipes.

Many cases study and comparisons with ARIMA and ANN model
were presented and the results showed that the proposed ap-
proach provides a more accurate and effective forecasting.

Acknowledgements

The authors would like to thank the support of the Brazilian
Institutions of CAPES (Project 023/05), CNPq and FAPEMIG.

References

[1] Mandal P, Senjyu T, Funabashi T. Forecast several hours ahead electricity prices
and loads in deregulated markets. Energy Convers Manage 2006;47:2128–42.

[2] Conejo AJ, Plazas MA, Espinola R, Molina AB. Day-ahead electricity price
forecasting using the wavelet transform and ARIMA models. IEEE Trans Power
Syst 2005;20(2):1035–42.



116 C. Unsihuay-Vila et al. / Electrical Power and Energy Systems 32 (2010) 108–116
[3] Conejo A, Contreras J, Espı́nola R, Plazas M. Forecasting electricity prices for a
day-ahead pool-based electric energy market. Int J Forecasting
2005;21:435–62.

[4] Metaxiotis K, Kagiannas A, Askounis D. Artificial intelligence in short-term
electric load forecasting: a state of-the-art survey for the researcher. Energy
Convers Manage 2003;4:1525–34.

[5] Dillon TS, Morsztyn K, Phua K. Short term load forecasting using adaptive
pattern recognition and self-organizing techniques. In: Proceedings 5th world
power system computation conference (PSCC-5). Cambridge; 1975. p. 1–15.

[6] Sestito S, Leung S, Dillon TS. Short term load forecasting using an adaptive
neural network. J Electr Power Energy Syst 1991;13(4):186–92.

[7] Choi J-G, Park J-K, Kim K-H, Kim J-C. A daily peak load forecasting system using
a chaotic time series. In: Proceedings of the international conference on
intelligent systems applications to power systems ISAP; 1996. p. 283–7.

[8] Mori H, Urano S. Short-term load forecasting with chaos time series analysis.
In: International conference on intelligent systems applications to power
systems ISAP; 1996. p. 283–7.

[9] Iokibe T, Fujimoto Y, Kanke M, Suzuki S. Short-term prediction of chaotic time
series by local fuzzy reconstruction method. J Intell Fuzzy Syst 1997;5:3–21.

[10] Drezga I, Rahman S. Phase-space based short-term load forecasting for
deregulated electric power industry Neural Networks. Int Joint Conf IJCNN
1999;5:3405–9.

[11] Michanos SP, Tsakoumis AC, Fessas P, Vladov SS, Mladenov VM. Short-term
load forecasting using a chaotic time series. Int Symp Signals, Circuit Syst SCS
2003;2:437–40.

[12] Kawauchi H, Sasaki H, Ishikawa F, Sugihara H. A development of real time load
forecasting system based on chaos theory. In: 6th international conference on
advances in power system control, operation and management, vol. 2; 2003. p.
541–6.

[13] Jiang C, Wang C, Ma Y. Short-term load nonlinear forecasting with high-
embedded dimensions using wavelet decomposing and chaos theory. The
IASTED-2004 Conf Eur Power Energy Syst 2004:1–6.

[14] Zhang H-Shan WS. Power load forecasting with least squares support vector
machines and chaos theory. Int Conf Power Syst 2005:1–6.

[15] Liao G-C. Hybrid chaos search genetic algorithm and meta heuristics method
for short-term load forecasting. Electr Eng 2006;88:1–6.

[16] Liu Z, Xie X, Zhang D, Liu H. Local partial least squares multi-step model for
short-term load forecasting. IEICE Trans Fundam 2006;E89-A:1–6.

[17] Tian L, Noore A. Short-term load forecasting using optimized neural network
with genetic algorithm. In: 8th international conference on probabilistic
methods applied to power systems. Iowa: Iowa State University Ames;
September 2004. p. 12–6.

[18] Li Y, Li B, Fang T. Short-term load forecast based on fuzzy wavelet support
vector machines. In: Proceedings of the 5th world congress on intelligent
control and automation. Hangzhou, PR China; 15–19 June 2004.

[19] Contreras J, Espı́nola R, Nogales FJ, Conejo AJ. ARIMA models to predict next-
day electricity prices. IEEE Trans Power Syst 2003;18(3):1014–20.

[20] Nogales FJ, Contreras J, Conejo AJ, Espı́nola R. Forecasting next-day electricity
prices by time series models. IEEE Trans Power Syst 2002;17(2):342–8.

[21] Aggarwal SK, Saini LM, Kumar A. Electricity price forecasting in deregulated
markets: A review and evaluation. Int J Electr Power Energy Syst
2009;31(1):13–22.

[22] Szkuta BR, Sanabria LA, Dillon TS. Electricity price short-term forecasting using
artificial neural networks. IEEE Trans Power Syst (PES) 1999;14(3):851–7.

[23] Rodrı́guez CP, Anders GJ. Energy price forecasting in the Ontario competitive
power system market. IEEE Trans Power Syst 2004;19(1):366–74.

[24] Pao H-T. Forecasting electricity market pricing using artificial neural networks.
Energy Convers Manage 2007;48(3):907–12.
[25] Garcia RC, Contreras J, van Akkeren M, Garcia JBC. GARCH forecasting model to
predict day-ahead electricity prices. Trans Power Syst 2005;20(2):867–74.

[26] Pingan Z, Xiaohong G. Fuzzy modeling for electricity market price forecasting.
In: Proceedings of the 3rd world congress on intelligent control and
automation, vol. 3; 28 June–2 July 2000. p. 2262–6.

[27] Kim C-I, Yu I-K, Song YH. Prediction of system marginal price of
electricity using wavelet transform analysis. Energy Convers Manage 2002;
43:1839.

[28] Amjady N, Keynia F. Day ahead price forecasting of electricity markets by a
mixed data model and hybrid forecast method. Int J Electr Power Energy Syst
2008;30(9):533–46.

[29] Yang H, Duan X. Chaotic characteristics of electricity price and its forecasting
model. IEEE-CCECE Can Conf Electr Comput Eng 2003;1:659–62.

[30] Guangjian L, Sangao H, Junliang D. The chaotic property of system marginal
price and its forecasting. Proc CSEE 2003;23(5):6–8.

[31] Wu W, Zhou J-Z, Yu J, Zhu C-J, Yang J-J. Prediction of spot market prices of
electricity using chaotic time series. In: Proceeding of the 3rd international
conference on machine learning and cybemetics. Shanghai; 26–29 August
2004. p. 1–6.

[32] Liu Z, Yang H, Lai M. Electricity price forecasting model based on chaos theory.
In: Power engineering conference, IPEC; 2005. p. 1–5.

[33] Varadan V, Leung H, Bossé É. Dynamical Model Reconstruction and Accurate
Prediction of Power-Pool Time Series. IEEE Trans Instrum Meas
2006;55(1):1–10.

[34] Kantz H, Schreiber T. Nonlinear time series analysis. Cambridge University
Press; 2002.

[35] Abarbanel HDI, Parlitz U. Nonlinear analysis of time series data. In: Schelter
Björn, Winterhalder Matthias, Timmer Jens, editors. Handbook of time series
analysis. Weinheim: Wiley-VCH Verlag; 2006. p. 5–33.

[36] Merkwirth Christian, Parlitz Ulrich, Lauterborn Werner. Fast exact
approximate nearest neighbor searching for nonlinear signal processing.
Phys Rev E 2000;62(2):2089–97.

[37] McNames J. Innovations in local modeling for time series prediction. PhD
thesis, Stanford University; May 2000.

[38] Babovic V, Keijzer M, Stefansson M. Optimal embedding using evolutionary
algorithms. In: Proceedings of 4th international conference on
hydroinformatics. Iowa City, Iowa: Iowa Institute of Hydraulic Research;
2000. p. 1–6.

[39] Phoon KK, Islam MN, Liaw CY, Liong SY. Practical inverse approach
for forecasting nonlinear hydrological time series. J Hydrol Eng 2002;7(2):
116–28.

[40] Merkwirth C, Parlitz U, Wedekind I, Lauterborn W. Matlab software package
for nonlinear time series analysis tstool. Advances in enzymology, vol. 2.
Germay; 2008. Available from: http://www.physik3.gwdg.de/tstool/.

[41] Bäck T. Evolutionary algorithms in theory and practice. 1st ed. New
York: Oxford University Press; 1996.

[42] Indepent system operator – ISO New England. Available from: http://www.iso-
ne.com.

[43] The Alberta electric system operator. Available from: http://www.aeso.ca.
[44] Compañía Operadora del Mercado Español de Electricidad (Spanish market

operator). Available from: http://www.omel.es.
[45] Data mining, statistical analysis, quality control – STATISTICA. Software,

StatSoft Inc.; 2005. Available: http://www.statsoftinc.com/
[46] Box GEP, Jenkins GM. Time series analysis: forecasting and control. San

Francisco, CA: Holden-Day; 1976.
[47] Balestrassi PP, Popova E, Paiva AP, Marangon-Lima JW. Design of experiments

on neural network’s training for nonlinear time series forecasting. J
Neurocomput; 2009. doi:10.1016/j.neucom.2008.02.002.

http://www.physik3.gwdg.de/tstool/
http://www.iso-ne.com
http://www.iso-ne.com
http://www.aeso.ca
http://www.omel.es
http://www.statsoftinc.com/
http://dx.doi.org/10.1016/j.neucom.2008.02.002

	Electricity demand and spot price forecasting using evolutionary computation  combined with chaotic nonlinear dynamic model
	Introduction
	An hybrid approach based on nonlinear chaotic dynamic and evolutionary strategy
	Times series prediction by chaotic nonlinear dynamics
	Chaotic dynamics models in times series prediction
	The hybrid PREDICT2 and evolutionary strategy (ES) based approach to times series forecasting
	Summary of the PREDICT2-ES algorithm
	Final considerations

	Experiments, results and comparisons
	ARIMA
	ANN
	Results and comparisons

	Conclusions
	Acknowledgements
	References


