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Abstract In recent years, several papers on machining
processes have focused on the use of artificial neural
networks for modeling surface roughness. Even in such a
specific niche of engineering literature, the papers differ
considerably in terms of how they define network archi-
tectures and validate results, as well as in their training
algorithms, error measures, and the like. Furthermore, a
perusal of the individual papers leaves a researcher without
a clear, sweeping view of what the field’s cutting edge is.
Hence, this work reviews a number of these papers,
providing a summary and analysis of the findings. Based
on recommendations made by scholars of neurocomputing
and statistics, the review includes a set of comparison
criteria as well as assesses how the research findings were
validated. This work also identifies trends in the literature
and highlights their main differences. Ultimately, this work
points to underexplored issues for future research and
shows ways to improve how the results are validated.

Keywords Artificial neural networks .Machining . Surface
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Nomenclature
AFM Abrasive flow machining
AISI American Iron and Steel Institute
ANN Artificial neural networks
ART Adaptive resonance theory (a class of artificial

network)
BP Backpropagation algorithm
CNC Computer numerical controlled
d Depth of cut (mm)
DOE Design of experiments
ECM Electrochemical machining
EDM Electrical discharge machining
f Feed (mm/v)
F Activation function in a multilayer perceptron
H Total number of neurons in a layer of a multilayer

perceptron
K Number of radial units in a radial basis function

network
LM Levenberg–Marquadt algorithm
MAE Mean average error
MLP Multilayer perceptron
MSE Mean square error
QN Quasi-Newton algorithm
Ra Average surface roughness (µm)
Rt Peak-to-valley roughness (µm)
Rm Maximum roughness (µm)
r Tool nose radius (mm)
RBF Radial basis function
RMSE Root mean square error
RSM Response surface methodology
R2 Pearson coefficient
SOM Self-organizing maps
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SSE Sum of square errors
uh Output of a neuron in a multilayer perceptron
v Multilayer perceptron neuron output
V Cutting speed (m/min)
w0 Bias (or intercept) value in a multilayer

perceptron
w Synaptic weight
x Input vector in a radial basis function network
� Activation function of radial unit in a radial basis

function network
µ Vector representing the hyper-center of a radial

basis function
σ Spread factor of a radial basis function

1 Introduction

Fierce competition and an increasingly demanding market
signify today’s manufacturing landscape. To remain com-
petitive, according to Karpat and Özel [1], manufacturers
must increase their productivity while maintaining, if not
improving, product quality. Hitting this target is especially
challenging in an industry where quality and productivity
are typically conflicting objectives. An industry where such
conflict is routine is modern machining. In the operation of
turning, for example, Cus and Zuperl [2] note that
production rate, cost, and product quality are three
incompatible objectives. Moreover, as the machining
industry welcomes the introduction of new materials and
cutting tools, it finds itself undergoing a rapid development
which is giving rise to processes of highly complex and
nonlinear phenomena. Executing such processes, Singh and
Rao [3] point out, constitutes an additional challenge for
planning and optimization.

An important advantage in meeting this new challenge is
being able to quickly acquire information on specific
machining operations. When a key role in such operations
is economy, Reddy and Rao [4] maintain that knowing the
optimum machining parameters is vital. Researchers want-
ing to gather such knowledge have proposed using
machinability models. For Paiva et al. [5], these models
may be used as objective functions in optimization,
simulation, control, and planning.

One area where machinability models have been
extensively investigated is surface quality. Because of its
impact on product performance [6, 7], surface quality in
machining is an essential consumer requirement. Basheer et
al. [8] affirm that characteristics of machined surfaces
significantly influence its physical properties. According to
Sharma et al. [9], new applications in various manufactur-
ing fields like aerospace, automobile, and die and mold

have fueled a rapid increase in the demand for products
with high-quality finishes.

A surface quality indicator widely used is surface
roughness [10, 11]. It plays a critical role, according to
Öktem [12], in evaluating and measuring the quality of a
machined product. For Öktem, the ability of a product to
withstand stresses, temperature, friction, and corrosion is
greatly affected by its roughness. In addition, roughness has
an impact on properties like wear resistance, light reflec-
tion, and coating. Karayel [13] contends that the difficulty
in controlling roughness is due to the intrinsic complexity
of the phenomena that generates its formation. For these
reasons, roughness modeling has become not just an
especially defying business but an area of great interest
for research.

Engineers involved with modeling of surface roughness
have at their disposal a number of options. For a variety of
reasons, one particular option has been largely investigated
in the literature—the use of artificial neural networks
(ANNs). ANNs, a paradigm of artificial intelligence, are
claimed by El-Mounayri et al. [14] and Coit et al. [15] to
have many attractive properties for modeling complex
production systems. These include universal function
approximation, resistance to noisy or missing data, accom-
modation of multiple nonlinear variables with unknown
interactions, and good generalization capability. They are
especially useful, according to Ezugwu et al. [16], for
mapping complex relationships whose representation in
analytical terms would otherwise be difficult. Among
works on the subject, there are distinct strategies employed
for data collection, model definition, model fitting, and
validation of results obtained.

Applying ANNs for roughness prediction, however, is
not without some reported shortfalls. In classifying quality
prediction in high-speed milling processes, for example,
Correa et al. [17] observed that Bayesian networks out-
performed neural networks. In a study on waterjet machin-
ing, Çaydas and Hasçalik (2007) [18] found that a multiple
regression model yielded slightly superior results for
roughness prediction than did ANNs.

The present work tries to synthesize and analyze
research efforts that utilize neural networks in off-line
surface roughness modeling. The goal is to put forward a
broad view of the strategies and problems that normally
come up in the literature. The work provides a critical
analysis of the current stage of research. Furthermore, by
making use of recommendations from acknowledged
scholars in neurocomputing science and statistics, the work
discusses good practices.

The paper is structured as follows: Section 2 presents a
review of surface roughness; Section 3 emphasizes histor-
ical aspects and main paradigms of ANNs; Section 4
reviews the conceptual framework around roughness
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modeling via neural networks; Section 5 characterizes the
analyzed papers and details the criteria adopted for the
review; Section 6 reviews publications in terms of strategy
and data collection techniques adopted; Section 7 analyzes
the distinct model definition choices and the approaches
used for finding suitable network configurations and for
model fitting; Section 8 appraises how models are
validated; finally, Section 9 presents the conclusions and
points to directions for future research on the subject.

The authors hope that this bibliographic review is
innovative in two ways: First, the means of modeling
roughness are categorized, providing the reader a qualita-
tive view of the distinct approaches adopted in each
modeling phase; second, a guideline of good practices,
based on recommendations from experts in the distinct
research fields involved, is here assembled.

2 Surface roughness

Benardos and Vosniakos [11] define surface roughness as
the superimposition of deviations from a nominal surface
from the third to the sixth order where the orders of
deviation are defined by international standards [19]. The
concept is illustrated in Fig. 1. Deviations of first and
second orders are related to form. Consisting of flatness,
circularity, and waviness, these deviations are due to such
things as machine tool errors, deformation of the work-
piece, erroneous setups and clamping, and vibration and
workpiece material inhomogenities. Deviations from third
and fourth orders, which consist of periodic grooves,
cracks, and dilapidations, are due to shape and condition
of cutting edges, chip formation, and process kinematics.
Deviations from fifth and sixth orders are linked to

workpiece material structure and are related to physico-
chemical mechanisms acting on a grain and lattice scale
such as slip, diffusion, oxidation, and residual stress [11].

Surface roughness, for Correa et al. [17], defines the
functional behavior of a part. As pointed out by Oktem et al.
[20] and by Chang and Lu [21], it plays an important role in
determining the quality of a machined product. Roughness
is thus an indicator, according to Pal and Chakraborty [22],
of process performance and must be controlled within
suitable limits for particular machining operations.

The factors leading to roughness formation are complex.
Karayel [13] declares that surface roughness depends on
many factors including machine tool structural parameters,
cutting tool geometry, workpiece, and cutting tool materials.
Erzurumlu and Oktem [23] assert that roughness is
determined by the cutting parameters and by irregularities
during machining operations such as tool wear, chatter,
cutting tool deflections, presence of cutting fluid, and
properties of the workpiece material. In traditional machin-
ing processes, Benardos and Vosniakos [24] maintain that
the most influential factors on surface roughness are:
mounting errors of the cutter in its arbor and of the cutter
inserts in the cutter head, periodically varying rigidity of the
workpiece cutting tool machine system wear on cutting
tool, and formation during machining of built-up edge and
non-uniformity of cutting conditions (depth of cut, cutting
speed, and feed rate). The same authors claim that
statistically significant in roughness formation are the
absolute values of cutting parameters such as depth of cut,
feed, and components of cutting force. Still, not only the
enlisted factors are influential, according to Benardos and
Vosniakos [24], but also the interaction among them can
further deteriorate surface quality.

The process-dependent nature of roughness formation, as
Benardos and Vosniakos [11] explain, along with the
numerous uncontrollable factors that influence the phenom-
ena make it difficult to predict surface roughness. The
authors state that the most common practice is the selection
of conservative process parameters. This route neither
guarantees the desired surface finish nor attains high metal
removal rates. According to Davim et al. [25], operators
working on lathes use their own experience and machining
guidelines in order to achieve the best possible surface finish.

Among the figures used to measure surface roughness,
the most commonly used in the literature is roughness
average (Ra). It is defined as the arithmetic mean value of
the profile’s departure from the mean line throughout a
sample’s length. Roughness average can be expressed as in
Eq. 1 [26]:

Ra ¼ 1

lm

Zlm
0

yðxÞj jdx ð1Þ
Fig. 1 Nominal surface deviations—adapted from DIN4760 [19]
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where Ra stands for roughness average value, typically
measured in micrometers (μm), lm stands for the sampling
length of the profile, and |y(x)| stands for the absolute
measured values of the peak and valley in relation to the
center line average (μm). According to the ISO:1302
4288:1996 [27] international standard, machining processes
can achieve roughness values ranging from 0.006 to
50 μm,. For discrete measurement, surface roughness
average can be defined as in Eq. 2 (ISO 4287/1, 1997) [26]:

Ra ¼ 1

n

Xn
i¼1

yij j ð2Þ

where Ra is the roughness average, n stands for the number
of samples in a given length, and |yi| stands for the absolute
measured values of the peak and valley in relation to the
center line average. Correa et al. [17] point out that being
an average value and thus not strongly correlated with
defects on the surface, Ra is not suitable for defect
detection. Yet they also proclaim that due to its strong
correlation with physical properties of machined products,
the average is of significant regard in manufacturing.

Benardos and Vosniakos [11], in a review on the subject,
grouped the efforts to model surface roughness into four
main groups: (1) methods based on machining theory,
aimed at the development of analytical models; (2)
investigations on the effect of various factors on roughness
formation through the execution of experiments; (3) design
of experiment (DOE)-based approaches; and (4) methods
based on artificial intelligence techniques.

Equation 3 [28] offers an example of a theoretical model
where Ra stands for roughness average (in μm), f stands for
feed (in mm/rev), and r stands for tool nose radius (in mm).

Ra � 0:032� f 2

r
: ð3Þ

Such models, Sharma et al. [9] tell us, take no account of
imperfections in the process, such as tool vibration or chip
adhesion. In some cases, according to authors like Zhong et
al. [29], Özel and Karpat [10], and others [29, 30], results
differ from predictions.

Singh and Rao [3] describe experimental attempts to
investigate the process of roughness formation. Using finish
hard turning of bearing steel (AISI 52100), the authors
study the effects of cutting conditions and tool geometry on
surface roughness.

Empirical models are also employed for modeling
surface roughness, generally as a result of experimental
approaches involving multiple regression analysis or
experiments planned according to DOE techniques. An
example of this strategy can be found in Sharma et al. [9].
Cus and Zuperl [2] and Fang and Safi-Jahanshaki [31]
proposed empirical models (linear and exponential) for

surface roughness as a function of cutting conditions, as
shown in Eq. 4:

Ra ¼ co V c1f c2dc3
� �

: ð4Þ

In Eq. 4, Ra stands for roughness average. V, f, and d
stand for cutting speed (m/min), feed (mm/rev), and depth
of cut (mm), respectively. c0, c1, c2, and c3 are constants
that must be experimentally determined and are specific for
a given combination of tool, machine, and workpiece
material. Fredj and Amamou [30] point to the fact that in
many cases, regression analysis models established using
DOE techniques failed to correctly predict minimal rough-
ness values.

3 Neural networks

According to Haykin [32], ANNs are massive parallel
distributed processors made up of simple processing units
or neurons. These neurons have a natural propensity for
storing and making available for use experiential knowl-
edge. ANNs acquire knowledge from an environment
through a learning process. They create a representation
of this knowledge in the form of interneuron connection
strengths, known as synaptic weights. Neural network
processing, or neurocomputing, can be seen as a non-
algorithmic form of computation; it constitutes one of the
main branches of the learning machines field of research
[32, 33].

ANNs have their roots in the initial forays into artificial
intelligence. McCulloch and Pitts [34] outlined the first
mathematical model of the neuron. Hebb [35] introduced
the concept that learning is a process of adjusting synaptic
weights. Among the first practical implementations were
simple networks capable of performing some logical
operations and classifying simple patterns—the perceptron
[36] and the adaline [37]. These achievements introduced
important concepts like network training and the delta rule
for error minimization. Minsky and Papert [38] proved that
perceptrons were incapable of solving linearly inseparable
problems, a serious limitation that curbed scientific activity
in the matter. Interest in neural networks was revived by the
works of Hopfield [39] and Kohonen [40]. In 1986, the
limitations revealed by Minsky were overcome by an
algorithm introduced by Rumelhart et al. [41]—the back-
propagation (BP) training algorithm. Since then, new ANN
architectures and training algorithms have been investigated
deeply, leading to huge developments in neurocomputing.
In addition to that, neural networks have been successfully
applied to solve a wide range of practical and complex
problems in several distinct fields. These include pattern
recognition, signal processing, chemical and biomedical
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industrial processes, and in manufacturing operations like
welding, molding, machining, and many others.

According to several authors [14, 15, 32, 42], there are
two main motivations for solving problems using ANNs—
to learn through example and to generalize learned
information. What exactly does “to learn” mean? It is to
adapt a neural network’s parameters by training the stimuli
embedded in the network’s environment. “To generalize” is
to produce coherent outputs of patterns unseen during
learning [32].

There are two main paradigms of learning: supervised
and unsupervised. For each of them, distinct training
algorithms can be found. In supervised learning, a network
is presented a set of patterns containing input values and the
corresponding expected outputs; parameters are adjusted
based on an error figure. In contrast, unsupervised learning
networks are given no output values, only input. The
network, by identifying statistic regularities of input data,
forms internal representations; this process gives way to
encoding features of inputs that allow its mapping of
outputs [32]. As a result of learning, a neural network
acquires knowledge of the underlying relationships between
independent and dependent variables of a process.

Figure 2 shows the most commonly employed ANN
architecture: a multi-layer perceptron (MLP) network. The
ANN has three types of layers: the input, output, and the
hidden layers. Each neuron on the input layer is assigned to
an attribute in data and produces an output which is equal
to the scaled value of the corresponding attribute. The
hidden layers, usually numbering one or two, are interme-
diate between the input and output layers. Neurons on the
hidden layer perform the scalar product of the neuron’s
input vector by the vector of weights associated to its
inputs. The result of the scalar product is compared to a
threshold limit. In case the limit is exceeded, the scalar
product is used as an independent variable to an activation
function whose output will be the neuron’s output. Sigmoid
functions are largely employed as activation functions,

although linear Gaussian and hyperbolic functions are also
utilized. The output layer sums up the resulting vector from
the hidden layer, thus providing the network’s overall
outputs. Each layer consists of neurons, those in adjacent
layers being fully connected with respective weights, while
those in the same layer are not. Equation 5 shows a type of
activation function found commonly in the literature.

f ðzÞ ¼ 2

1þ e�zð Þ � 1: ð5Þ

For each neuron in the hidden or output layer, the input–
output transformation employed is defined as in Eq. 6:

v ¼ F
XH
h¼1

whuh þ w0

 !
ð6Þ

where v is the output of the neuron, H is the total number of
neurons in the previous layer, uh is the output of the hth
neuron in the previous layer, wh is the corresponding
connection weight, w0 is the bias (or intercept), and F is the
nonlinear activation function. Neurons on the output layer
perform a weighted sum over the outcomes of the hidden
layer to generate network outputs.

Another well-known architecture, proposed by Broomhead
and Lowe [43], is the radial basis function network (RBF). In
RBFs, the activation function is a radial basis function, a
class of functions whose value increases or decreases with
the distance to a central point. The argument of such a
function is basically a Euclidean norm (a distance) between
vectors. One such function commonly employed in RBFs is
the Gaussian function shown in Eq. 7 [44]:

fi mð Þ ¼ � exp
x� mik k2
2s2

 !
ð7Þ

where x corresponds to an input vector, µi is a vector
corresponding to the hyper-center of function fi, and σ is a
spread factor for that function. In a RBF network having K
radial units in the intermediate layer and one output, this is
given by Eq. 8 [44]:

y ¼
XK
i¼1

wif x� mk k2
� �

þ w0 ð8Þ

where x and μ are defined as in Eq. 7, f represents the
activation function of the radial units, as the Gaussian
function represented by Eq. 7, wi represents the weight
values by which the output of a radial unit is multiplied in
the output layer, and w0 is a constant. According to Bishop
[33], RBFs are suitable for performing a series of tasks,
among which is the approximation of functions. The training
of RBF networks, which include both supervised and
unsupervised learning, is hybrid.Fig. 2 Multilayer feedforward ANN structure
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4 Surface roughness modeling with ANNs

The use of ANNs in machining applications, according to
Sick [45], can be grouped into online and off-line
approaches. Online approaches, in order to collect model-
ing data, fit sensing devices to the machine. Networks are
trained in real time using process parameters measured by
sensors and results are employed in time-critical tasks. In
the off-line approach, experimental data, historical data, or
previously collected sensor data are used to train the
network in order to build models for use in process
planning or optimization purposes.

The potential of ANNs for use in machining processes
was perceived during the 1990s. In order to predict tool life
in turning gray cast iron with cutting tools of mixed oxide
ceramic type, Ezugwu et al. [46] used results from experi-
ments involving distinct cutting speed and feed values to
train an MLP. Chao and Hwang [47] performed a similar
study. Early works on surface roughness modeling can be
found in Chien and Chou [48] where, in the process of
turning of a 304 stainless steel, networks predict surface
roughness, cutting force, and tool life. Tsai and Wang [49]
compared distinct ANN structures for prediction of surface
roughness in electrical discharge machining (EDM). Using
data obtained from experiments conducted on a computer
numerically controlled (CNC) milling machine and planned
according to DOE techniques, Benardos and Vosniakos
[24] trained a neural network to predict surface roughness.

The notion of using ANNs in machining processes has
yielded a considerable number of papers. In many of them,
researchers argue for their use. Davim et al. [25] maintain
that neural networks are able to capture the characteristic
nonlinearity of turning. Karpat and Özel [1] speak of the
difficulty of generating, in hard turning, explicit analytical
models of the complex relationship among the parameters
involved. Neural networks, according to the authors, pose a
suitable and practical option for modeling. Results obtained
by Özel et al. [50] show that neural network models are
able to predict, for a range of cutting conditions, tool wear
and surface roughness patterns; moreover, for hard turning,
they can be utilized in intelligent process planning. Oktem
et al. [20], using data obtained experimentally, trained an
MLP according to the BP algorithm for roughness
prediction. The authors reported that results were excellent.

More examples can be found in the work of Assarzadeh
and Ghoreishi [51], aimed at optimizing the surface
roughness in EDM using neural networks. The authors
declared the effectiveness of using the MLPs for the
prediction of material removal rate and Ra. In Hossain et
al. [52], an ANN model was developed for the investigation
and prediction of the relationship between cutting param-
eters and surface roughness during high-speed end milling
of nickel-based Inconel 718 alloy. A very good predicting

performance of the neural network was observed. Other
approaches include the work of Panda and Mahapatra [53]
in which principal components were used for modeling of
drill wear. The principal components of drilling parameters
were calculated and networks were trained to predict them.
Networks were able to classify low wear and high wear
within an accuracy of 90% and to predict the drill flank
wear within ±6.5% error.

The use of ANNs in online control of machining
operations is the subject in Gao et al. [54] where they are
applied for mapping relations between tool condition and
features extracted from distinct sensor signals by using
experimental data. Huang et al. [55] applied ANNs for the
adaptive surface roughness control in end milling oper-
ations. For those authors, off-line, manual techniques to
assess surface roughness and part quality are costly and
time-consuming, which favors the use of neural networks.
The same conclusion can be found in Nalbant et al. [56]
who sustain that ANNs are a good alternative to conven-
tional empirical modeling based on linear regressions for
surface roughness modeling.

It must be stated, however, that there is no consensus on
the experience with neural networks for surface roughness
modeling. Authors like Dhokia et al. [57] point to the lack
of systematic design methods for neural networks as a
disadvantage. For Cervellera et al. [58] and for Karnik et al.
[59], finding a good ANN architecture requires several
modeling attempts, making it a time-consuming activity.
Ambrogio et al. [7] testify of the need for large amounts of
data for training and validation; such a need limits the
practical application of neural networks in machining
processes. More computational effort is required, according
to Bagci and Işik [60], to build an artificial neural network
model than other methods.

In fact, the effective design of ANNs is a defying
problem even in neurocomputing domain, as stated in
Zanchettin et al. [61]. The authors proposed a DOE-based
scheme for the identification of the most influential factor
on the performance of a neuro-fuzzy inference system.
Examples of optimization attempts can be found in the
work of Mohana Rao et al. [62] aimed at modeling surface
roughness of die sinking EDM using neural networks.
Genetic algorithms were used in their research to optimize
the weight factors of the network. Ortiz-Rodrigues et al.
[63] proposed the use of the Taguchi methods (a DOE
technique) for robust design of MLPs trained by back-
propagation algorithm and develops a systematic and
experimental strategy which emphasizes simultaneous
optimization artificial neural network’s parameter optimi-
zation under various noise conditions.

An analysis of the literature reveals that most of the
studies follow common steps like problem delimitation,
definition of an experimental strategy, data collection,

884 Int J Adv Manuf Technol (2010) 49:879–902



choice of a network architecture and topology, network
fitting by means of training, data analysis, network
selection, and some kind of validation of results. This
sequence closely resembles, as seen in Fig. 3 [64], the
forecasting and modeling conceptual activities enlisted by
Montgomery et al. [64] and Montgomery and Runger [65]
for multiple regression analysis and time series forecasting
models.

For those authors, the development of models for
forecasting must follow a well-defined set of steps. The
first step, as seen in Fig. 3, is the problem definition
which comprises the specification of what will be
forecasted, the independent variables to be used as
predictors, and also the definition of how users expect to
use the resulting model. The following step is the data
collection which includes the techniques employed to
collect valid and representative data from the process.
Data analysis refers to the treatment applied to collected
data in order to convert it in useful information. As the
behavior of a model is defined by its free parameters, it is
necessary to perform model selection and fitting. Model
fitting corresponds to the adjustments made on model
parameters to ensure maximum accuracy and precision and
to the techniques applied in the search for optimal
parameters. Model selection is related to the rules
employed to decide in favor of a given parameter
configuration. The final step in this framework is model
validation where a model shall be applied to forecast new
cases, not included in selection and fitting, to provide an
independent measure of the model quality. For every
aforementioned step, the mentioned authors strongly
recommend the use of statistical techniques to ensure the
development of useful and reliable models.

In fact, the result obtained when ANNs are employed
to model surface roughness is a semi-parametric model
[66], that is, a model where roughness is represented not
only in machining terms but also in terms of the network
architecture selected, network configuration parameters
(such as the number of hidden layers, the number of
neurons, and the activation functions employed), and
of the training strategy adopted. As with any other kind
of model, an ANN model is required to have a well-
defined accuracy, precision, and associated confidence
levels. Those characteristics are essential in order to
ensure model quality and to grant model acceptance in
production floor environments. In order to achieve such

desirable characteristics, some good practices have to be
observed during model elaboration and validation activi-
ties. These practices are related to the observance of
neurocomputing and statistical principles. It is under this
conceptual framework that the research works this study
focuses on are reviewed.

The review begins by specifying the criteria employed
for the selection of papers. A characterization will be done
in terms of date of publication and specific machining
process dealt with by the publications. In the sequence, the
studies will be classified and analyzed in regard to the
following modeling aspects, derived from Montgomery’s
[64] conceptual framework:

& Problem definition and data collection
& Model selection and fitting
& Model validation

Together with the qualitative classifications, comments
are included in order to highlight good practices or to
identify opportunities for improvement in research. As a
way of giving insight into possibilities for future research,
modeling ideas from other domains are also introduced
when applicable.

5 Characterization of reviewed works

The search for papers was conducted using scientific
resource bases, such as Elsevier, Springer, Taylor and
Francis, Emerald, and others. Publications were chosen for
evaluation if they matched the following requirements:

& focused on surface roughness prediction in machining
processes

& made use of neural networks as modeling technique
& adopted an off-line approach to fit network models

Based on these criteria, 45 publications were selected
and reviewed. Figure 4 depicts their chronological distri-
bution. The figure shows that off-line roughness prediction
in machining by means of ANNs has attracted a sustained
interest from researchers. In fact, from 2005 to 2008, there
was an increase in the number of papers published on the
subject (the survey was conducted during the first quarter of
2009).

Table 1 synthesizes distinct options taken by authors
along reviewed papers. The table shows specific network
architectures adopted in each paper as well as the number
of inputs and outputs of the networks. The first column
contains the number of the reference as seen in the
“References” section. The use of cutting speed, feed, and
depth of cut as inputs for prediction is also detailed. In
addition to that, the table specifies the roughness measure-
ment figures employed. Information is provided on theFig. 3 Forecasting process—adapted from Montgomery et al. [64]
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training algorithm used (for works using MLPs), on the use
of distinct sets for training and selection, on the use of a
third validation set, and on the figure adopted to measure
network accuracy in each study.

Figure 5 displays the specific machining processes
investigated along selected publications. Thirty-six out
of the 45 works deal with conventional machining
processes, including turning [2, 8–10, 13, 16, 22, 25,
29, 42, 48, 50, 60, 67–72], milling [12, 17, 20, 21, 23, 24,
57, 73–78], drilling [79, 80], and grinding [30]. The
remaining papers are focused on EDM [49, 81–84],
abrasive flow machining (AFM) [85, 91], electrochemical
machining (ECM) [86], micro-end milling [87], and
waterjet machining [18].

Accounting for about 42% of the total works
reviewed, turning was the process most studied. The
same was observed by Sick [45] in his review about tool
condition monitoring. Among selected publications deal-
ing with turning is the work of Karayel [13] where a
neural network model is proposed for the prediction and
control of surface roughness in a CNC lathe. Davim et al.
[25] developed surface roughness prediction models using
networks of MLP architecture to investigate the effects of
cutting conditions, using cemented carbide tools, in the
turning of free machining steel, 9SMnPb28k(DIN). In
Basheer et al. [8], an artificial neural network model is
employed to predict the surface roughness on Al/SiCp
composites.

There are also applications in hard turning. This process
became possible due to new cutting tool materials, such as
cubic boron nitride and ceramics [3]. Hard turning behaves
differently from ordinary turning [1]. Quiza et al. [88]
maintain that traditional regression methods present severe
limitations for hard turning applications due to the extreme

nonlinearity that characterizes the process and to the use of
modern tool materials. This seems to favor the use of ANN
in such a process. An example can be found in Özel et al.
[50] in which neural networks were used to investigate the
influence of cutting parameters on tool flank wear and
surface quality in hard turning of AISI D2 steel (60 HRC)
using ceramic inserts with wiper (multipoint radius) nose
geometry.

Accounting for another 28% of the publications
reviewed is milling process. Öktem [12] conducted a
study on surface roughness to model and optimize the
cutting parameters in end milling process of AISI 1040
steel material with TiAlN solid carbide tools under wet
conditions. The work of Bruni et al. [75] aimed at building
predictive models for surface roughness in the finish face
milling process of AISI 420 B stainless steel. Examples of
applications involving other conventional material removal
processes can be found in Tsao and Hocheng [80] who
made use of networks to predict the thrust force and
surface roughness of candlestick drill in drilling of
composite materials and in Fredj and Amamou [30] who
proposed the use of ANNs for roughness prediction in
grinding processes.

Other reviewed applications include machining of non-
metallic materials. Dhokia et al. [57] focused on the
machining of soft materials, as polypropylene. Their work
was directed to create a model and to find optimal cutting
conditions for roughness minimization. In Bagci and Işik
[60], an ANN is employed for the estimation of surface
roughness in the process of turning unidirectional glass
fiber-reinforced plastic composites.

ANNs have been employed for roughness prediction
in non-conventional machining processes as well.
Markopoulos et al. [82], Mandal et al. [84], and Sarkar

Fig. 4 Yearly distribution of reviewed publications
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et al. [83] proposed neural models for the prediction of
surface roughness in EDM. Being an already established
technology in the tools and dies industry, EDM is still one
of the expertise-demanding processes in the manufactur-

ing industry [82]. Another example is the work of Mollah
and Pratihar [85] which employed RBF networks for
modeling input–output relationships in abrasive flow
machining processes.

Table 1 Summary of network usage decisions taken along reviewed works

Reference ANN Input Cutting
speed

Feed Depth of
cut

Outputs Figure Algorithm Distinct
sets

Validation
set

Error

2 MLP/RBF 3 X X X 3 Ra BP Yes No None

8 MLP 5 X X 1 Ra LM Yes No MAE(%)

9 MLP 4 X X X 4 Ra BP Yes Yes MSE

10 MLP 7 X X 1 Ra LM Yes No RMSE

12 MLP 4 X X X 1 Ra BP Yes No RMSE

13 MLP 3 X X X 1 Ra/Rmax BP Yes Yes MAE(%)

16 MLP 4 X X X 1 Ra LM Yes Yes Correlation

17 MLP 6 X X 1 Ra BP Yes No Proportion

18 MLP 5 1 Ra BP No No MAE(%)

20 MLP 5 X X X 1 Ra Unclear Yes No MAE(%)

21 Other 6 X X X 1 Ra NA Yes No MAE(%)

22 MLP 5 X X X 1 Ra BP Yes No MSE

23 MLP 5 X X X 1 Ra Unclear Yes No MAE(%)

24 MLP 8+ X X X 1 Ra LM Yes Yes MSE

25 MLP 3 X X X 2 Ra/Rt BP Yes No MAE(%)

29 MLP 7 X X 2 Ra/Rt BP Yes Yes MAE(%)

30 MLP 8+ X X 1 Ra BP Yes No unclear

42 MLP 4 X X X 3 Ra BP No No MAE(%)

48 MLP 3 X X X Unclear Ra BP Yes No MAE(%)

49 MLP/RBF Unclear 1 Ra BP Unclear No MAE(%)

50 MLP 6 X X 1 Ra/Rt LM Yes No None

57 MLP/RBF 3 X X X 1 Ra LM Yes Yes MAE(%)

60 MLP 3 X X X 1 Ra BP Yes No MAE(%)

67 MLP 3 X X X 4 Ra BP Yes No None

68 MLP 4 X X X 1 Ra BP Yes Yes MAE(%)

69 RBF 4 X X X 1 Ra NA Yes Unclear MAE(%)

70 MLP/RBF 3 X X X Unclear Ra Unclear Yes No None

71 MLP 3 X X X 1 Ra New Yes No MAE(%)

72 MLP 3 1 Ra BP Yes No MAE(%)

73 RBF 4 X X X 1 Unclear NA Yes No None

74 MLP 3 3 Unclear BP Yes No None

75 MLP 8+ X 1 Ra BP No No Unclear

76 MLP 5 X X X 1 Fractal Para LM Yes Yes R2

77 MLP 4 X X X 1 Binary clas QN No No None

78 MLP 4 X X X 1 Ra New Unclear No MAE(%)

79 MLP 3 X X 1 Ra BP No No None

80 RBF 4 X X X 2 Ra NA Yes No MAE(%)

81 MLP 3 2 Ra LM Yes No MAE(%)

82 MLP 3 1 Ra BP Yes Yes None

83 MLP 6 3 Ra BP Yes No MAE(%)

84 MLP 3 3 Ra BP Yes No MAE(%)

85 RBF 4 2 Ra NA Yes No MAE(%)

86 MLP 4 2 Ra Unclear Yes No MAE(%)

87 MLP 4 X X X 1 Ra BP Yes No MAE(%)

91 Other 2 2 Ra NA Yes No None
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6 Problem definition and data collection

The initial steps for model elaboration, as set out by
Montgomery et al. [64], are problem definition and data
collection. Problem definition comprises the specification
of what is to be modeled, the strategy to be employed, and
the understanding of how users expect to employ the
resulting model. Data collection includes the selection of
predictor variables and the techniques used to obtain
relevant data to be used in building the model.

The problem in question along the reviewed papers is the
use of ANNs as a modeling tool for the estimation or
classification of surface roughness prediction in machining.
Process parameters are typically used as independent
variables. The usual expectation is to obtain models
presenting smaller errors in prediction than from other
methods. Davim et al. [25] sustain that RSM-based models
are restricted to a small range of input parameters and hence
not suitable for highly complex and nonlinear processes.

Applications of ANN models in conjunction with other
tools are common. The motivation for the use of hybrid
approaches is to obtain results superior to those obtained
separately by any of the techniques involved. This is
observed in Öktem [12] where a genetic algorithm was
employed to explore the ANN roughness model in a search
for combinations of cutting parameters able to deliver the
smallest surface roughness. The same approach is observed
in Tansel et al. [87]. Other examples of such a strategy are
the works of Mollah and Pratihar [85], Oktem et al. [20],
and also Gao et al. [89] where an artificial neural network
and a genetic algorithm are used together for the optimi-
zation of an EDM process.

Eighteen papers compare models obtained from ANNs to
those elaborated using other techniques, such as multiple

regression analysis or response surface methodology. Out of
this number, network models, in ten publications, are consid-
ered to be superior. Examples can be found in Tsao and
Hocheng [80], Asokan et al. [86], and Çaydas and Hasçalik
[18]. Al-Ahmari [42] conducted statistical tests to establish the
difference in performance between distinct models. The author
concluded that the neural network was superior. The
performance of ANN models, in six works, is deemed as
equal. In two articles, the alternative method outperformed the
neural model. This was the conclusion obtained by Correa et
al. [17] where neural networks were compared to Bayesian
networks (a machine learning classification method) for the
prediction of surface roughness in high-speed machining.

Comparisons between distinct types of networks are
performed in six publications [2, 48, 49, 57, 69, 86]. In
Dhokia et al. [57], the authors compared the performance of
two distinct network architectures, MLPs and RBFs. Their
conclusion, based on hypothesis tests, is that RBF networks
outperformed MLPs. Sonar et al. [69] made the same
comparison. In that study, the MLPs were superior to the
RBFs. Tsai and Wang [49] compare six network config-
urations including MLPs and RBFs trained by distinct
algorithms. Error in validation and the Pearson coefficient
(R2) were used to express the results. Although a lot of data
are presented, the article points to no clear winner. It must
be pointed out that both MLPs and RBFs possess properties
of universal function approximation [90]. As a conse-
quence, there will always be a topology of one type capable
of emulating the performance of a network of another type.
Hence, instead of focusing on architecture comparison,
research efforts should be concentrated in other directions,
such as network optimization.

Less usual approaches can be found as well. El-Sonbaty
et al. [76] developed ANN models for the analysis and

Fig. 5 Machining processes studied in reviewed publications

888 Int J Adv Manuf Technol (2010) 49:879–902



prediction of the relationship between the cutting conditions
and the corresponding fractal parameters of machined
surfaces in face milling operations. In the work of Balic
[74], roughness is actually an input of an MLP network
trained to predict optimal cutting conditions as outputs for
process planning purposes.

The next step, after defining the problem to be treated
and adopting the research strategy, is collecting data to be
used to train and test the network. One must initially define
the number and nature of the independent variables (or
predictors) to be employed. This is an important issue in
ANN modeling. The set of inputs shall ideally include all
variables of significance for roughness prediction. At the
same time, though, neurocomputing authors like Haykin
[32] recommend the use of a minimal set of uncorrelated
inputs for best modeling. Figure 6 displays the number of
predictors among the 45 reviewed papers.

There is a range of inputs. The minimum observed is two
[91]. In three papers [24, 30, 75], more than eight are
employed. A useful example, taken from the area of tool
life prediction, is the work of Chao and Wang [47]; by
analyzing and removing correlated or irrelevant inputs, they
proposed a method of reducing the dimensionality of inputs
for predicting cutting tool life in turning.

Virtually all works reviewed (43 out of 45) clearly define
the nature of predictors employed. In only two cases, actual
inputs cannot be identified, although the texts suggest they
were based on cutting parameters. Figure 7 shows the
number of times a given input appeared among the 36
papers dealing with conventional machining processes. It
can be observed that cutting conditions (cutting speed, feed,
and depth of cut) are by far the most employed roughness
predictors, as for instance in Karayel [13], Öktem [12],
Dhokia et al. [57], and Bagci and Işik [60]. Although less
frequently, other process parameters are also employed as

model inputs. Tool radius, for example, is one of the factors
investigated by Al-Ahmari [42]. Sanjay and Jyothi [79]
utilize drill diameter along with cutting conditions in
drilling as a predictors. Rake angle is adopted as an input
by Zhong et al. [29]. Worth mentioning also is that in only
three publications is tool wear information employed as an
input; this is in spite of many authors considering it an
influential parameter in roughness formation [1, 21, 92].

Inputs appearing only once among the papers were
grouped under the label “Others.” Those inputs include size
and volume of tool reinforcements, dressing depth, number
of passes, tool insert grades, workpiece material, coolant
pressure, cutting edge geometry, lubrication condition, and
cutting length.

Papers dealing with non-conventional machining pro-
cesses make use of process-specific information for
modeling. Markopoulos et al. [82] employed pulse current,
pulse duration, and kind of processed material for the
prediction of roughness in EDM. Five steel grades were
tested and the remaining factors varied over a wide range,
from roughing to near-finished conditions. The model for
EDM proposed by Sarkar et al. [83] employed pulse time
on, pulse time off, peak current, wire tension, dielectric
flow rate, and servo reference tension as inputs. In Asokan
et al. [86], current, electrical tension, flow rate, and gap are
considered as inputs for roughness prediction in electro-
chemical machining.

Twenty-seven works justify their choice and range of
inputs. In some works, inputs are selected based on
previous machining studies, while in others, no justification
at all is presented. In [20] for instance, the range for cutting
parameters is defined by the limits fixed by the tool
manufacturer. In four studies [10, 24, 30, 67], distinct sets
of predictors are used in the search of the best set to build
the model. An example of such a strategy can be seen in

Fig. 6 Number of predictors employed as network inputs
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Benardos and Vosniakos [24] who employed a Taguchi
arrangement (a DOE technique) to select the inputs for
roughness prediction in the CNC face milling process.

Another issue in data collection is the technique adopted
for collecting training data. Five distinct approaches can be
found among the works reviewed, as seen in Fig. 8.

In over a third of the publications (17), the training set is
built from results of experiments planned and executed
according to DOE techniques. Examples are found in
Öktem [12] who uses results from a full factorial
experimental arrangement. Çaydas and Hasçalik [18]
employed the results of a Taguchi arrangement. About a
fourth of the papers (11) employ arrangements resembling
those of experimental designs. No explicit mention,
however, is made of this methodology nor indication given,
as for instance in [13], that DOE principles were followed

in the execution of the experiments. In some works, the
actual arrangement is only suggested, not shown explicitly.
For instance, [20] uses a remarkable set of 243 examples
collected from cutting experiments. Close to a third of the
publications (13) formed the training set with data obtained
from non-DOE techniques. Chien and Chou [48] employed
experimental results obtained from 96 test points randomly
selected between cutting condition limits established. In
two papers, training examples were generated by simu-
lations, and in two others, textbook equations were
employed. DOE is prevalent in data collection mainly
because many papers compare neural and multiple regres-
sion models obtained as a result of DOE techniques. Then,
in an attempt to provide a common base for comparison
between the two approaches, the same data are employed
for training networks.

Fig. 7 Nature of predictors
employed in model building

Fig. 8 Approach adopted to build neural network training sets
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Whether or not it is convenient to use DOE techniques
to form training sets is an open question. None of the
papers reviewed assess the influence of data collection
techniques on the performance of models. Would another
approach lead to better results, or to the same results with
a smaller number of experimental runs? Yet another point
not sufficiently explored is how efficiently the data from
ANNs is used compared to other approaches. Only Kohli
and Dixit [68] investigate the number of cases required to
produce an accurate model for a given machine–
tool–workpiece combination. Their work proposes a meth-
od of establishing the minimum number of training cases
required, in roughness modeling, for a good performance of
networks. Two issues that could receive more attention in
future research are the number of cases required to build a
model of certain precision and the influence of the
technique adopted to collect data.

Another classification can be made in regard to the
nature and number of model outputs. Figure 9 shows the
number of network outputs employed among reviewed
publications. For the most part, networks of only one output
are employed.

Figure 10 summarizes the nature of neural network
outputs in use. Roughness average is employed to measure
surface roughness in 41 works, accounting for about 90%
of the total. In addition to roughness average, neural
networks are commonly applied to predict some other
parameters of interest. An example can be found in Davim
et al. [25] who developed ANN models to predict peak-to-
valley roughness (Rt). As a measure of the process
performance, Mandal et al. [84] consider material removal
rate, tool wear, and surface roughness. Sarkar et al. [83]
proposed a model for the EDM process that adopted as
model outputs cutting speed, surface roughness, and wire
offset.

Outputs appearing only once were grouped together
under the label “Others.” Those outputs include maximum
roughness, ten point average roughness, depth of cut, wire
offset (in EDM process), fractal parameters, production
rate, cost, power consumption, tool wear rate, and machin-
ing time.

7 Model selection and fitting

Model selection and fitting consist of choosing one or more
forecasting techniques and estimating model parameters in
order to fit it to data [64]. After data are collected, it is
necessary to select, or specify, the neural network to be
used. Network designers choose the learning paradigm to
be employed as well as the network architecture and the
neuron activation function to be used. The concept of
fitting, for its turn, when applied to ANNs, corresponds to
the definition of a suitable network topology, to the training
it will be submitted to learn the relationship between inputs
and outputs, and to the data analysis conducted to establish
model fitness.

Researchers have at their disposal several options for
model selection. The first step is the definition of the
learning scheme and of the architecture to be used.
Figure 11 shows the number of times a given ANN type
appears among publications reviewed. Because some
papers employ more than one type of network in order to
compare their performances, the total number of appear-
ances exceeds 45.

Figure 11 reveals that networks of MLP architecture,
found in 39 works, are used in the vast majority (87%) of
the papers. RBFs are adopted in eight publications (around
18%). It is remarkable that among papers reviewed,
networks of unsupervised learning paradigms are scarcely

Fig. 9 Number of network outputs along reviewed publications
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employed. While the use of MLPs and RBFs (examples of
supervised and hybrid learning paradigms, respectively) is
widespread, only three publications employ unsupervised
learning networks. An example can be found in Balic [74]
where self-organizing maps (SOM) [40, 93] are employed
as part of a bigger network array to generate part programs
for milling and drilling on machining centers. Polynomial
networks [94], another type of unsupervised learning
network, are proposed for roughness modeling by Chang
and Lu [21] and Ali-Tavoli et al. [91]. For data clustering in
situations where classes are unknown, neurocomputing
theory recommends unsupervised networks. Remaining an
underexplored branch of the literature is the applicability of
unsupervised network paradigms, for roughness classifica-
tion, in special architectures such as SOM or ART (adaptive
resonance theory networks) [95, 96].

Regarding the activation function in use with networks
of MLP architecture, 11 publications make exclusive use of
the hyperbolic tangent sigmoid function. Seven papers
choose to use the logistic sigmoid function. Two papers
compare their effect on network accuracy and 19 publica-
tions make no mention of the activation function in use.
Although there is no evidence of difference in performance
linked to the activation function employed in MLPs,
Haykin [32] affirms that the hyperbolic tangent function,
due to its symmetrical shape, can lead to a faster
convergence in training. Publications working with RBF
architecture make explicit use of Gaussian function, as seen
in [49, 69, 80, 85] or do not specify the activation function
employed.

After the neural network model is selected, its parame-
ters must be fitted. Once again, many options are available

Fig. 10 Nature of network model outputs along reviewed publications

Fig. 11 Number of appearances of distinct network architectures along reviewed publications
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in terms of topology definition, learning algorithms,
training strategies, and fitness evaluation.

Topology definition is the most frequently reported
problem. Authors involved with roughness prediction with
ANNs repeatedly cite a disadvantage being the lack of
systematic procedures to efficiently design networks.
Correa et al. [17] declare, “There are no principled methods
of choosing the network parameters (number of hidden
layers, number of nodes in the hidden layers, form of
activation functions).” Similar observations are found in
Dhokia et al. [57] and Zhong et al. [29]. The choice of
suitable design parameters is essential to a well-performing
network. It is therefore important to analyze how the issue
is dealt with. The treatments given to network topology
definition along the reviewed publications are summarized
in Fig. 12.

As seen in Fig. 12, six distinct approaches can be found.
Trial and error, the most common approach, shows cause
for complaints about the lack of systematic design
procedures. It is employed in 19 papers (about 42% of the
total), as for instance in [13], for MLPs, and in [69] and
[80] for RBFs.

Authors propose their own methods for topology
definition in four publications. In Jesuthanam et al. [78], a
genetic algorithm was used for choosing optimized initial
weights to be given as inputs to a particle swarm
optimization algorithm, which was in turn used for
searching optimal synaptic weights. The weights were
applied to the neural network and the average error
compared to the expected result. The cycle was repeated
until a best fit was observed. Tansel et al. [87] applied
genetic algorithms in the search for optimized network
topologies for predicting machining parameters (roughness

included) in micro-machining operations. Sharma et al. [9]
offers a rather odd approach where the subject of
optimization is the number of training epochs itself. It
resulted in poor results of roughness prediction.

Four studies attempt to optimize network parameter
using a “one-at-a-time” strategy in which factors are varied
individually: Mollah and Pratihar [85], who employed RBF
networks for modeling in AFM, Mandal et al. [84], Fredj
and Amamou [30], and Kohli and Dixit [68].

In three other papers, optimization is only mentioned,
but actual optimization procedures are not detailed. Seven
papers present only the “best” topology; configuration
parameters such as number of hidden layers, number of
neurons in hidden layers, or training algorithms are fixed
with no justification. Finally, in eight publications, not even
the best topology is presented.

Some observations can be made about this topic. Given
the impact of network topology on the overall model
performance, the fact that networks are designed by trial
and error in almost half of the publications suggests that
roughness models obtained in those studies can be far from
optimal. The same can be said about models presented with
no objective evidence of optimization. “One-at-a-time”
strategies are not ideal for network design either; they can
lead to suboptimal solutions and are unable to detect
interactions among design factors involved [65]. The worst
situation, however, happens in those cases where not even
the best topology is presented. This absence thwarts any
possibility of reproducing the results and renders useless
the conclusions obtained.

In order to take advantage of the full potential of ANNs
for modeling, more effort should be spent on efficient
network design. A deeper understanding of neurocomput-

Fig. 12 Topology definition approaches adopted along reviewed publications
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ing principles is required for this task. One interesting
example on the subject, from another field of research, are
the works of Balestrassi et al. [97] and Queiroz et al. [98]
who successfully employed the DOE methodology in the
design of MLP networks for time series forecasting in
applications related to the electric energy sector. In
Guimarães et al. [99] and Guimarães and Silva [100],
neural networks were employed to model the discoloration
of acid orange 52 dye in the presence of H2O2 by photo-
oxidation. The authors proposed the use of the Garson
partition method [101] to quantify the influence of
independent variables associated to each input neuron on
the outcome of the process.

After defining topology, it is necessary to define how
training will be performed. In only two publications, [22]
and [85], could mention be found of the training mode in
use for MLPs. In these, two batches training mode was
used. The training algorithms in use for MLP networks are
displayed in Fig. 13. Twenty-four papers make use of the
standard backpropagation algorithm [41] (indicated as BP
in the figure). An example can be found in Karayel [13].
BP is the foremost training algorithm for MLPs, being used
as the didactical example in most neurocomputing text-
books. It is simple and stable, but very slow and prone to
get trapped in local minima.

Many other algorithms were proposed for MLP training
in order to increase speed of convergence and accuracy, as
were, for instance, the Levenberg–Marquadt [102] and
Newton-based methods [103]. The use of alternative
algorithms for MLP training should be encouraged among
researchers. Among the reviewed works, the Levenberg–
Marquadt (quoted as LM in Fig. 3) algorithm is employed
in eight papers, as in Basheer et al. [8] and Ezugwu et al.
[16], always with good results. In one paper [77], a Newton

algorithm is adopted. Three papers propose new approaches
for training [13, 71, 78], and in three others, the choice of
training algorithm is unclear.

The training of an MLP should ideally reduce the
network error on the training set and stop when the point
of minimum on error surface is reached. The criteria
adopted for interruption of the training phase for multilayer
perceptrons are distributed among the papers as shown in
Fig. 14.

Four publications made use of the early stopping
technique [16, 24, 57, 82]. It is widely used, according to
Haykin [32], and consists of periodically checking the
network error against a validation set during training.
Training is interrupted when minimum error is achieved.
The criteria adopted to finish training among the remaining
works were unable to guarantee minimum error. In five
works, training was stopped after a prespecified error in
estimation set was reached. Seven studies interrupted
training after a certain number of training epochs. Four
others established a fixed time limit for training. In five
publications, a trade-off criterion was adopted, and 14
works made no mention of the policy adopted to interrupt
training.

In addition to previous recommendations, neurocomput-
ing authors suggest the use of techniques to optimize the
use of training sets, such as K-fold cross-validation [32,
104]. The use of such a technique could be observed only
in Correa et al. [17].

Following the aforementioned steps, it is necessary to
select a network model. The selection of a network is based
on the analysis of error figures obtained from the end of
training phase. Networks presenting minimum error in
training are selected and then submitted to validation tests.
Here, their accuracy, precision, and generalization capabil-

Fig. 13 Algorithms employed to train MLP networks
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ities will be estimated using data not presented to the
network heretofore. Distinct figures are used among
the papers reviewed for network selection and to express
the accuracy of the final model, as can be seen in Figs. 15
and 16.

In Figs. 15 and 16, MSE stands for mean square error,
RMSE stands for root mean square error, and SSE stands
for sum of square errors. In those figures, papers that
express accuracy using absolute mean error or mean error
in percentage were grouped together under the label “Mean
error.” Error figures involving square errors are seen to be
prevalent for the selection of network architectures. This is
due to the fact that error functions employed in training
algorithms are mostly quadratic. On the other hand, mean
error figures are prevalent in the reviewed works as the
estimate for model accuracy or to compare the performance
of neural network models to that of models obtained by

other methods. Such figures are adopted in 25 publications
(about 56% of the total).

8 Model validation

The ultimate goal of a model is to provide accurate and
reliable forecasts about variables of interest. The utilization
of a model in practical situations, therefore, requires the
evaluation of the extent to which the model represents the
underlying phenomena. This is accomplished by means of
model validation. As defined by Montgomery et al. [64],
validation consists of assessing model performance in the
intended application. It implies, according to the authors,
having objective estimates of the amount of error expected
when the model forecasts fresh data. In addition, a model
should lend itself to peer validation and reuse.

Fig. 14 Criteria adopted to stop training in publications using MLP networks

Fig. 15 Error figures adopted for network selection

Int J Adv Manuf Technol (2010) 49:879–902 895



Assessing the reliability associated with a model requires
two things: (1) independent validation tests after training
and (2) statistical treatment of test results. The reusability of
a model can be achieved by including in the paper
information on how to reconstruct the model as well as
data and experimental conditions employed to train and test
the networks.

A basic technique in modeling, according to Montgom-
ery et al. [64], is the use of distinct data sets for model
fitting and validation (data splitting). It is necessary in
assessing the performance of a model when exposed to new
data and in comparing distinct models. The concept, when
applied to ANNs, corresponds to splitting available data
into training and test sets. The concept also constitutes one
of the elementary practices in neurocomputing. Figure 17
shows how the issue is dealt with among the reviewed
publications. In approximately 84% of the works reviewed,
the use of distinct sets is clearly established. In five works
(or 11% of the total), the same data set is wrongly applied
to train and to test the networks, and in two studies, that
distinction is unclear.

A problem to avoid in the work with ANNs is the onset
of overfitting. It is a phenomenon that leads to a reduction
in the generalization capability of a network. It can arise as
the result of overtraining or as a consequence of the
adoption of an excessive complex topology. Some strate-
gies are available to deal with the problem. The most
common, according to Haykin [32, 41], is the use of a basic
form of cross-validation [104] which consists of splitting
data in three subsets: estimation, validation, and test. The
estimation subset is used for network training. Periodically,
training is interrupted and the network is tested against the
validation subset until the validation error reaches a
minimum and starts to increase. The network configuration
at the point of minimum is restored, the training phase
interrupted, and the network is then submitted to predict the
test set. It corresponds, in practice, to the already mentioned
early stopping technique. The use of such a scheme among
the reviewed papers is displayed in Fig. 18.

The figure shows that only 20% of the papers make use
of a third data set. An example can be found in Sharma et
al. [9]. In that work, 30 examples are used for training, four

Fig. 16 Error figures adopted for model validation

Fig. 17 Use of distinct data sets for network training and test
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for validation, and 17 are reserved to be used as an
independent test set. Note that among the publications,
other techniques for preventing overfitting are hardly
discussed. Bayesian regularization techniques [105] were
employed in only five cases [8, 10, 16, 30, 50]. The use of
pruning techniques [106] was not observed.

An important contribution to ANN modeling in machining
processes was given by Sick [45] in his prolific review about
the use of ANNs for tool wear monitoring in turning
operations. In addition to the two issues discussed earlier,
Sick enlisted some important practical requirements for
model validation. The author recommended the repetition
of experiments with a given network topology in order to
reduce stochastic influences linked, for example, to randomly
initialized weights, to random sequences of training patterns,
or to random partitions of data. Those factors modify the
initial point and the trajectory described by a network over
error surfaces along training, as seen in Haykin [90], thus
introducing a random component to the fitting process. It is
necessary to acquire statistically significant samples of a
network in order to assess its modeling properties. The
repetition of experiments can be clearly detected in only
eight publications, including Kohli and Dixit [68] who
conducted ten repetitions for each topology being tested.

Another requirement for model validation is the estima-
tion of the accuracy and dispersion of the ANN model and
their expression in terms of statistical figures. Authors
recommend models to be delivered with estimates such as
mean error, variance, confidence intervals, or prediction
intervals [33, 45]. This practice is almost never followed.
Rare examples are found in Sonar et al. [69] and Kohli and
Dixit [68]. An additional point to remember is the fact that
not only network errors but also the amount of error in data
collection impacts the overall model accuracy. Estimates of
error in data collection should be presented along with
those of networks. Among the 45 publications reviewed,
not one adopted this approach.

The application of statistical tests to compare networks
with distinct structures, input features, or training algo-

rithms is yet another condition to sustain conclusions
obtained in research with neural networks. As mentioned
by Sick [45], “a decision in favour of or against a certain
number of hidden neurons should be based on an
appropriate number of repetitions of the experiments and
on a comparison of the results of these repetitions by means
of a statistical test.” The practice is also recommended by
the author for comparisons between ANN models and
models obtained by other methods. The lack of objective
evidence on model accuracy can raise doubts about the
validity of conclusions obtained in a study. In only ten
publications, or about 22% of the total, the application of
any statistical test was observed. A good approach is found
in the work of Al-Ahmari [42]. To compare errors in
roughness prediction of models obtained by regression
analysis, response surface methodology, and neural net-
works, in hard turning of austenitic AISI 302 steel, he
employed paired t tests and F tests. The same author
compared the dispersion of each model by means of Levene
tests.

There is one problem found regularly in the publications
proposing to compare distinct networks or to compare
networks to other models. This problem is that in most of
them, no systematic effort is made in order to optimize the
ANN model. Such an effort could dramatically change the
results obtained. One is left to wonder whether the result of
a comparison is just the outcome of a poor choice of
network topology. This is yet another issue that may lead to
mistaken conclusions in regard to algorithms, architectures,
or to the very use of networks as an option for roughness
modeling.

In addition to issues related to the validation process,
also evaluated were aspects regarding the reproducibility of
a model. Reproducibility of results is implied by results
being included in papers. Though this seems obvious, it is
not always the case in works dealing with this subject. As a
matter of fact, in 53% of the publications reviewed,
network results in training and tests are expressed only in
graphical format, making reproduction impracticable.

Fig. 18 Use of a third validation set for network selection
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Another common problem is the lack of the data sets used
for training and testing the networks. In some papers, it is
not even clear how many examples were employed as
training cases or as testing cases.

The reproduction of a study comprises also the ability to
reconstruct the ANN model proposed. Unlike models
obtained by methods such as multiple regression analysis,
neural networks require more information to be rebuilt. The
reconstruction of an ANN involves the knowledge of the
architecture employed, the number of neurons in each layer,
the nature of every input and output, the input and output
modulation schemes, the activation function employed in
each neuron, and the values of all synapses across the
network. A text should clearly provide all this information.
In case the final values of weights are not given, which is
usually the case, it becomes necessary to provide the initial
distribution of weights, the algorithm and training mode
applied, the criteria adopted to interrupt training, and the
regularization techniques, if any, employed.

Other basic neurocomputing practices are often overlooked
among works reviewed. The initialization of weights is an
important issue for network convergence, as mentioned by
Haykin [90]. The author recommends weights to be uniformly
distributed inside a small range. Only five publications
mention the approach adopted to initialize weights. In [24,
76, 84] Nguyen–Widrow [104] rule is employed, in agreement
with recommended practices. In [80], initial weights are all set
to the same value, and in [78], a genetic algorithm is
employed to define initial weights. In addition to initialization,
authors recommend the order of presentation of training
examples to be randomized during training cycles. No clear
mention of such a practice could be found.

On the other hand, some misconceptions can be found.
In one paper, authors add more neurons to the hidden
layers, assuming that more neurons will necessarily imply
fewer errors. In another one, in an example of a wrong
conception of the generalization capability, validation tests
using cases located outside the trained domain were
applied, obviously leading to poor results.

The analysis of each categorization carried out from
Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17
clearly provides some insights. In Fig. 4, the average
number of reviewed works dating from 2000 to 2004 is 1.4
and jumps to 7.6 when the period of 2005 to 2009 is
considered. Figure 5 shows the overwhelming prevalence
of works dealing with turning and milling. The two
processes together account for 71% of all works found on
the subject. Figure 6 demonstrates the dominance of
networks having three to five inputs which account for
75% of the applications. In Fig. 7, the conclusion to be
drawn is that cutting speed, feed, and depth of cut constitute
the bulk of the predictors employed for modeling rough-
ness. Together, they account for 67% of all inputs employed

for prediction, while the other inputs are scattered in 26
distinct categories. Results from DOE or experiments
resembling DOE are employed in 62%, as shown in
Fig. 8, mainly because researches want to take advantage
of previously obtained experimental results to train and
select networks and then carry out comparisons between
least square-based methods and ANN predictors. On
account of Fig. 9, it is clear that single output networks
are preferred in practice (64% of the total). Roughness
average (Ra) is the preferred figure to express roughness, as
shown by Fig. 10, appearing in 54% of the works studied.
The dominance of MLP networks, which appear in 86% of
the reviewed papers (as seen in Fig. 11), has already been
mentioned. A striking finding, as observed in Fig. 12, is
that 42% of the networks are designed by trial and error and
that systematic optimization efforts can be clearly estab-
lished in only 7% of the papers. Another result is the
preference given to BP algorithm for the training of MLPs
shown in Fig. 13, employed in more than half (53%) of the
papers using the referred ANN architecture. The analysis of
Fig. 14 indicates that the approach used to stop MLP
training greatly varies. The techniques used are scattered in
seven categories, with no individual approach reaching
more than 18% of the works involving that kind of
network. It is remarkable that the technique used is not
mentioned in 36% of MLP-based studies. Figure 15 reveals
how prevalent the use of square error figures to network
selection is. MSE, RMSE, and SSE hold 57% of the total.
Mean error-based figures are the preferred choice to express
final ANN model accuracy, as observed in Fig. 16. Those
figures are adopted in 55% of the investigated works. A
final finding can be drawn from Fig. 17 which shows that
the use of distinct sets for training and selection is explicitly
adopted in the vast majority (84%) of the research works, in
agreement with neurocomputing theory.

The construction of good ANN models is a complex and
demanding task when compared to other modeling techni-
ques. This is the trade-off for the superior computing
capability of an artificial neural network. The present analysis
suggests that great improvement could be made on works
produced on the subject, if basic requirements in neuro-
computing were observed, and possibilities offered by the
technique were better explored. It shows that in many works,
inadequate treatment is given to model validation. Moreover,
confidence in the use of ANN models could be substantially
improved where data and information required to reproduce
results and networks are provided by the papers.

9 Conclusions

A review of several publications dealing with surface
roughness modeling in machining processes by means of
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artificial neural networks was conducted. The objective was
to identify common approaches adopted by authors and to
evaluate the adherence to requirements concerning model
elaboration, fitting, and validation. As references, concepts
and practices recommended by authors from both neuro-
computing and statistic fields were adopted.

The review shows that most of the work in the area aims
to predict average surface roughness (Ra). Cutting con-
ditions are employed as network inputs in virtually all
publications. Most of training cases originate from results
of experiments planned according to DOE methodology or
at least results from experimental arrangements resembling
those from DOE. The use of other approaches for data
collection is uncommon. Little attention is paid to efficient
use of training sets. Practices like cross-validation are not
common. Efforts to determine the minimum number of
training cases necessary to make neural models outperform
other modeling approaches for machining processes are
extremely rare. Those are issues that could be further
investigated by researchers.

A vast majority of the publications make use of
supervised learning networks of MLP architecture, trained
by the backpropagation algorithm. Networks of RBF
architecture are a distant second. Only a few papers use
networks of the unsupervised learning paradigm. There is
an open field for studies aiming to investigate the
applicability and efficiency of unsupervised learning,
distinct network architectures, and training algorithms for
the task of roughness prediction.

In roughness modeling with ANNs, researchers point to
the main problem being the definition of optimal network
topologies. Trial and error follows as the most frequent
approach for topology definition. Optimization efforts can
be detected in a small number of publications, and in many
works, only the “best” network configuration is presented.
Comparisons between topology definition approaches could
not be found. Given the particular characteristics of neuro-
computing and the scant attention paid to network
optimization in the articles reviewed, it seems probable
that there are suboptimal results among the articles
reviewed.

In regard to model validation, most of the publications
clearly observe the principle of using distinct sets of data to
train and test the network to measure its generalization
capability, that distinction being neglected or unclear in
some works. On the other hand, the use of a third data set
for validation, recommended by some authors as a way to
prevent overfitting, can be found in only a few studies. The
use of regularization techniques is rare and the practice of
pruning was not observed.

An important requirement concerning validation, the
repetition of experiments with a given network topology,
was found in a small fraction of reviewed works. The use of

statistical evaluation to compare trained networks, or to
compare networks of different paradigms, could be found in
only about a fifth of the works reviewed. There is also a
lack of statistical evaluation in comparisons between ANN-
based models and models obtained by other methods. The
estimation of accuracy and precision of ANN models are
other points requiring further attention. In only a reduced
group of papers were tests conducted and error estimates
presented. Additional problems were detected in regard to
model reusability. In some works, prediction results are
presented only in a graphical way. It was also observed that
many papers lack basic information that would allow
reproduction of results obtained. Papers should include
training and test sets employed, results obtained in
numerical format, and the specifications of the resulting
network models.

The failure to meet such requirements can compromise
the validity and sustainability of conclusions obtained. It
does not allow the assessment of how efficient neural
networks can be in the task of roughness prediction in
machining processes and how they compare to other
modeling approaches.

Accurate and reliable models are becoming more and
more necessary to quickly acquire knowledge of operations
involving new tools and materials. Neural networks are a
suitable tool for the task. Their use, however, depends on
the objective assessment of their potential and on the
identification of systematic and efficient ways to deliver
neural models of high performance. The conclusion of this
review is that while many works have been produced on the
subject, there is still a great need for methodology
improvement. Future works should be more deeply rooted
in neurocomputing concepts, devote more effort to network
optimization; they should be validated on firmer statistical
grounds, and, finally, be more careful about presentation of
results obtained. Those characteristics will be essential to
obtaining models possessing the qualities expected by
manufacturers and to establish confidence in the use of
ANN modeling by the machining industry.
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