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a b s t r a c t

This work presents a study on the applicability of radial base function (RBF) neural networks for predic-
tion of Roughness Average (Ra) in the turning process of SAE 52100 hardened steel, with the use of Tagu-
chi’s orthogonal arrays as a tool to design parameters of the network. Experiments were conducted with
training sets of different sizes to make possible to compare the performance of the best network obtained
from each experiment. The following design factors were considered: (i) number of radial units, (ii) algo-
rithm for selection of radial centers and (iii) algorithm for selection of the spread factor of the radial func-
tion. Artificial neural networks (ANN) models obtained proved capable to predict surface roughness in
accurate, precise and affordable way. Results pointed significant factors for network design have signif-
icant influence on network performance for the task proposed. The work concludes that the design of
experiments (DOE) methodology constitutes a better approach to the design of RBF networks for rough-
ness prediction than the most common trial and error approach.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Surface quality is an essential consumer requirement in
machining processes because of its impact on product perfor-
mance. The characteristics of machined surfaces have significant
influence on the ability of the material to withstand stresses,
temperature, friction and corrosion (Basheer, Dabade, Suhas, &
Bhanuprasad, 2008). The need for the products with high quality
surface finish keeps increasing rapidly because of new application
in various fields like aerospace, automobile, die and mold manufac-
turing and manufacturers are required to increase productivity
while maintaining and improving surface quality in order to
remain competitive (Karpat & Özel, 2008; Sharma, Dhiman, Sehgal,
& Sharma, 2008).

A widely used surface quality indicator is surface roughness.
High surface roughness values decrease the fatigue life of ma-
chined components (Benardos & Vosniakos, 2002; Özel & Karpat,
2005). The formation of surface roughness is a complex process, af-
fected by many factors like tool variables, workpiece material and
cutting parameters. The complex relationship among the

parameters involved makes it difficult to generate explicit analyt-
ical models for hard turning processes (Karpat & Özel, 2008).

In hard turning, most of process performance characteristics
are predictable and, therefore, can be modeled. These models, ob-
tained in different ways, may be used as objective functions in
optimization, simulation, controlling and prediction algorithms
(Tamizharasan, Sevaraj, & Haq, 2006). Al-Ahmari (2007) sustains
that machinability models are important for a proper selection
of process parameters in planning manufacturing operations. A
better knowledge of the process could ultimately lead to the com-
bination or elimination of one of the operations required in the
process, thus reducing product cycle time and increasing produc-
tivity (Singh & Rao, 2007).

Among the strategies employed for modeling surface rough-
ness, methods based on expert systems are very often employed
by researchers (Chen, Lin, Yang, & Tsai, 2010; Zain, Haron, & Sharif,
2010). Benardos and Vosniakos (2003), in a review about surface
roughness prediction in machining processes, pointed that models
built by means of artificial intelligence (AI) based approaches were
more realistic and accurate in the comparison to those based on
theoretical approaches. AI techniques, according to the authors,
‘‘take into consideration particularities of the equipment used and
the real machining phenomena’’ and are able to include them into
the model under construction. Several works make use of ANNs
for surface roughness prediction. It can be seen as a ‘sensorless’ ap-
proach for estimation of roughness (Sick, 2002), where networks
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are trained offline with historical or experimental process data and
then employed to predict surface roughness. As pointed out by
Coit, Jackson, and Smith (1998), neurocomputing suits modeling
of complex manufacturing operations due to its universal function
approximation capability, resistance to the noise or missing data,
accommodation of multiple non-linear variables for unknown
interactions and good generalization capability. Some works, how-
ever, report drawbacks in using ANNs for prediction (Ambro-gio,
Filice, Shivpuri, & Umbrello, 2008; Bagci & Isik, 2006). An often
reported problem with ANNs is the optimization of network
parameters. Zhong, Khoo, and Han (2006) affirms that there is no
exact solution for the definition of the number of layers and neural
nodes required for particular applications.

This study proposes the application of the design of experi-
ments (DOE) methodology for the design of neural networks of
RBF (Radial Basis Function) architecture applied to the prediction
of surface roughness (Ra) in the turning process of AISI 52100 hard-
ened steel. The factors considered were the network parameters:
number of radial units on the hidden layer, the algorithm em-
ployed to calculate the spread factor of radial units and the algo-
rithm employed to calculate center location of the radial
functions. This work will make use of Taguchi’s orthogonal arrays
to identify levels of factors that benefits network prediction skills,
to assess the relative importance of each design parameter on net-
work performance. This made it possible to evaluate the relative
importance of each design factor on network performance and
the accuracy attainable by RBFs as the amount of examples avail-
able for training and selection varies. Pairs of input–output data
obtained from turning operations were used to generate examples
for network training and for confirmation runs. Cutting speed (V),
feed (f), and depth of cut (d) were employed as network inputs.
The results pinpoint network configurations that presented the
best results in prediction, for each size of training set. It is expected
that RBF networks present good performance on the proposed task.

2. Surface roughness

Benardos and Vosniakos (2003) define surface roughness as the
superimposition of deviations from a nominal surface from the
third to the sixth order where the orders of deviation are defined
by international standards (ISO 4287, 2005). The concept is illus-
trated in Fig. 1. Deviations of first and second orders are related
to form. Consisting of flatness, circularity, and waviness, these
deviations are due to such things as machine tool errors, deforma-

tion of the workpiece, erroneous setups and clamping, and vibra-
tion and workpiece material inhomogeneities. Deviations from
third and fourth orders, which consist of periodic grooves, cracks,
and dilapidations, are due to shape and condition of cutting edges,
chip formation, and process kinematics. Deviations from fifth and
sixth orders are linked to workpiece material structure and are re-
lated to physicochemical mechanisms acting on a grain and lattice
scale such as slip, diffusion, oxidation, and residual stress
(Benardos & Vosniakos, 2003).

Surface roughness defines the functional behavior of a part. It
plays an important role in determining the quality of a machined
product. Roughness is thus an indicator of process performance
and must be controlled within suitable limits for particular
machining operations (Basheer et al., 2008; Karpat & Özel, 2008).

The factors leading to roughness formation are complex.
Karayel (2009) declares that surface roughness depends on many
factors including machine tool structural parameters, cutting tool
geometry, workpiece, and cutting tool materials. The roughness
is determined by the cutting parameters and by irregularities
during machining operations such as tool wear, chatter, cutting
tool deflections, presence of cutting fluid, and properties of the
workpiece material. In traditional machining processes, Benardos
and Vosniakos (2002) maintain that the most influential factors
on surface roughness are: mounting errors of the cutter in its arbor
and of the cutter inserts in the cutter head, periodically varying
rigidity of the workpiece cutting tool machine system wear on cut-
ting tool, and formation during machining of built-up edge and
non-uniformity of cutting conditions (depth of cut, cutting speed,
and feed rate). The same authors claim that statistically significant
in roughness formation are the absolute values of cutting parame-
ters such as depth of cut, feed, and components of cutting force.
Still, not only the enlisted factors are influential, according to
Benardos and Vosniakos (2002), but also the interaction among
them can further deteriorate surface quality.

The process-dependent nature of roughness formation, as
Benardos and Vosniakos (2003) explain, along with the numerous
uncontrollable factors that influence the phenomena makes it dif-
ficult to predict surface roughness. The authors state that the most
common practice is the selection of conservative process parame-
ters. This route neither guarantees the desired surface finish nor at-
tains high metal removal rates. According to Davim, Gaitonde, and
Karnik (2008), operators working on lathes use their own experi-
ence and machining guidelines in order to achieve the best possi-
ble surface finish. Among the figures used to measure surface
roughness, the most commonly used in the literature is roughness
average (Ra). It is defined as the arithmetic mean value of the pro-
file’s departure from the mean line throughout a sample’s length.
Roughness average can be expressed as in Eq. (1) (ISO 4287, 2005):

Ra ¼
1
lm

Z lm

0
jyðxÞjdx ð1Þ

where Ra stands for roughness average value, typically measured in
micrometers (lm), lm stands for the sampling length of the profile,
and |y(x)| stands for the absolute measured values of the peak and
valley in relation to the center line average (lm). Correa, Bielza, and
Pamies-Teixeira (2009) point out that being an average value and
thus not strongly correlated with defects on the surface, Ra is not
suitable for defect detection. Yet they also proclaim that due to its
strong correlation with physical properties of machined products,
the average is of significant regard in manufacturing.

Benardos and Vosniakos (2003), in a review on the subject,
grouped the efforts to model surface roughness into four main
groups: (1) methods based on machining theory, aimed at the
development of analytical models; (2) investigations on the effect
of various factors on roughness formation through the execution ofFig. 1. Nominal surface deviations—adapted from DIN4760 (1982).
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experiments; (3) design of experiment (DOE)-based approaches;
and (4) methods based on artificial intelligence techniques.

Eq. (2) offers an example of a traditional theoretical model
where Ra stands for roughness average (in lm), f stands for feed
(in mm/rev), and r stands for tool nose radius (in mm).

Ra � 0:032x
f 2

r
ð2Þ

Such models, Sharma et al. (2008) tell us, take no account of imper-
fections in the process, such as tool vibration or chip adhesion. In
some cases, according to authors like Zhong et al. (2006), Karpat
and Özel (2008), results differ from predictions.

Singh and Rao (2007) describe experimental attempts to inves-
tigate the process of roughness formation. Using finish hard turn-
ing of bearing steel (AISI 52100), the authors study the effects of
cutting conditions and tool geometry on surface roughness.

Empirical models are also employed for modeling surface
roughness, generally as a result of experimental approaches
involving multiple regression analysis or experiments planned
according to DOE techniques. An example of this strategy can be
found in Sharma et al. (2008). Cus and Zuperl (2006) proposed
empirical models (linear and exponential) for surface roughness
as a function of cutting conditions, as shown in Eq. (3):

Ra ¼ C0ðVC1 � f C2 � dC3 Þ ð3Þ

In Eq. (3), Ra stands for roughness average.V, f, and d stand for cutting
speed (m/min), feed (mm/rev), and depth of cut (mm), respectively.
C0, C1, C2, and C3 are constants that must be experimentally deter-
mined and are specific for a given combination of tool, machine,
and workpiece material. Zain et al. (2010) point to the fact that in
many cases, regression analysis models established using DOE tech-
niques failed to correctly predict minimal roughness values.

3. Artificial neural networks

3.1. Radial Basis Function networks (RBF)

According to Haykin (2008), an artificial neural network (ANN)
is a distributed parallel systems composed by simple processing
units called nodes or neurons, which perform specific mathematic
functions (generally non-linear), thus corresponding to a non-algo-
rithmic form of computation. In its most basic format, an artificial
neuron is an information processing unit composed of: a set of syn-
apses, each one characterized by a weight value; an adder, respon-
sible by summing the input signals properly multiplied by the
weight values in the synapses; and an activation function. In an
artificial neural network, the knowledge about a given problem is
stored in the values of the weights of the synapses that intercon-
nect neurons in the layers of the network. An activation function
defines the output of a network node in terms of the level of activ-
ity in its inputs (Haykin, 2008).

The ability to learn by means of examples and to generalize
learned information is, doubtless, the main attractive in the solu-
tion of problems using artificial neural networks, according to
Braga, Carvalho, and Ludermir (2007). It is a main task of a neural
network to learn a model from from its surrounding environment
and to keep such a model sufficiently consistent to the real world
so as to reach the goals specified for the application it is intended
to perform. The use of neural networks in solving a given problem
involves determining the design parameters of the network, a
learning phase and a test phase, during which the performance
of the network is assessed (Haykin, 2008). Fig. 2 shows, as an
example, a Radial Basis Function (RBF) network.

The figure shows a typical RBF composed of three layers: an
input layer composed of three radial units, a hidden layer where

non-linear processing (represented by function /) is carried out;
and an output layer, containing a single unit. Each input unit is con-
nected to all radial units on the hidden layer and each radial units on
the hidden layer is connected by weighted synapses (represented
by w) to the output layer. The synaptic weights are modified during
training phase in order to teach the networks the non-linear
relationship that exists between inputs and output.

The radial function in use is usually a Gaussian function. The
output layer usually contains neurons that calculate the scalar
product of its inputs. In a RBF network having k radial units in
the intermediate layer and one output, this is given by Eq. (4)
(Bishop, 2007):

y ¼
Xk

i¼1

wi/ðkx� lk2Þ þw0 ð4Þ

where x represent an input vector, l represents the hyper-center of
radial units, / represents the activation function of the radial units,
as, for instance, a Gaussian function; wi represents the weight val-
ues by which the output of a radial unit is multiplied by in the out-
put layer and w0 is a constant factor.

3.2. ANNs applied to surface roughness prediction

Neural network models have been widely applied to prediction
tasks in hard turning processes. Networks of MLP (multi-layer per-
ceptron) architecture are employed in most of them. Works com-
paring the performance of ANN models to that presented by DOE
based models are not rare, with mixed results. In Erzurumlu and
Oktem (2007), a response surface model RSM and an ANN are
developed for prediction of surface roughness in mold surfaces.
According to the authors the neural network model presented
slightly better performance, though at a much higher computa-
tional cost. In Çaydas and Hasçalik (2008), an ANN and a regression
model were developed to predict surface roughness in abrasive
waterjet machining process. In this case, the regression model
was slightly superior. Palanisamy, Rajendran, and Shanmugasun-
daram (2008) compared the performance of regression and ANN
models for predicting tool wear in ending milling operation, with
ANNs presenting better results. Karnik, Gaitonde, and Davim
(2008) applied neural networks and RSM models to predict the
burr size for a drilling process. The authors concluded that ANN
performance was clearly superior to that obtained by the polyno-
mial model. Bagci and Isik (2006) developed an ANN and a

Fig. 2. Schematic diagram of a RBF network.
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response surface model to predict surface roughness on the turned
part surface in turning unidirectional glass fiber reinforced com-
posites. Both models were deemed as satisfactory. The use of neu-
ral networks in conjunction with other methods is yet another
strategy adopted by some authors (Karpat & Özel, 2008).

Only a few studies make use of RBF networks for prediction in
machining processes. Shie (2008) combined a trained RBF network
and a sequential quadratic programming method in order to find
an optimal parameter setting for an injection molding process. In
Dubey (2009), they are employed in conjunction with desirability
function and genetic algorithms in a hybrid approach for multi-
performance optimization in electro-chemical honing process.
Sonar, Dixit, and Ohja (2006) made use of RBFs for prediction of
surface roughness in the turning process of mild steel with carbide
tools. In that work, RBFs were outperformed by MLPs. Neverthe-
less, the authors emphasized that RBF definition was simple and
its training fast. Cus and Zuperl (2006) performed a comparison
between the performance of MLP and RBF networks applied to
predict surface roughness in turning operations. Although MLP
have outperformed the RBF, that work evidences that RBF is stable
and converges much faster than MLPs. El-Mounayri, Kishawy, and
Briceno (2005) employed RBF networks to prediction of cutting
forces in CNC ball end milling operations. Results of that work
reveal that RBF’s achieved a high level of accuracy in the proposed
task. Once more, authors stressed the easy definition and fast
convergence of the network.

3.3. Network topology definition

Distinct approaches can be found in literature for the definition
of the network topologies employed for roughness prediction. In a
review of several publications dealing with surface roughness mod-
eling in machining processes by means of artificial neural networks,
Pontes, Ferreira, Silva, Paiva, and Balestrassi (2010) pointed to the
fact that trial and error still remains as the most frequent technique
for ANN topology definition, as in Erzurumlu and Oktem (2007). In
some studies, heuristics are used to define the parameters (Kohli &
Dixit, 2005). In other cases, a ‘one-factor-at-a-time’ technique is
used in the search for a suitable configuration (Fredj & Amamou,
2006; Kohli & Dixit, 2005).

The use of DOE techniques for optimization is scarcely found.
There are some examples as the work of Quiza, Figueira and Davim
(2008), where an experimental design is employed to configure a
neural network of MLP architecture intended to predict tool flank
wear in hard machining of D2 AISI steel. The following factors
are employed in the experimental design: learning rate, moment
constant, training epochs and number of neurons in hidden layer.
In regard to the use of Taguchi method as a tool for designing neu-
ral networks, Khaw, Lim, and Lim (1995) employed Taguchi’s
methodology to the project of MLP networks with the aim of max-
imize their accuracy and speed of convergence. Kim and Yum
(2003) made use of Taguchi’s methodology to design parameters
of MLP networks in order to maximize network robustness in pres-
ence of noise signals. In Balestrassi, Popova, Paiva, and Lima (2009)
the Taguchi methodology was employed for the optimization of
MLP networks applied to time series prediction. The authors sus-
tain that traditional methods of studying one-factor-at-a-time
may lead to unreliable and misleading results while and error
can lead to sub-optimal solutions.

In the comparison with previous papers, the present paper
could be innovative in the following points:

– The use of DOE technique for the design of RBF networks in sur-
face roughness prediction, considering a large database.

– The study of the relative importance of the design factors on
network performance.

– The assessment of the attainable accuracy in surface roughness
prediction for turning of AISI 52100 steel for distinct amounts of
examples available for training the networks.

4. Design of experiments in Taguchi’s methods

According to Montgomery (2009), the design of experiments
(DOE) methodology consists in design experiments capable of gen-
erating data suitable for a statistical analysis of its results, what in
turn leads to valid and objective conclusions. The DOE approach
comprises execution of experiments in which factors involved in
a process under analysis are varied simultaneously, with the goal
of measuring its effect over the output variable (or variables) of
such a process.

The strategy employed for designing experiments in Taguchi’s
methods is based in orthogonal arrays. They correspond to a kind
of fractional factorial designs, in which not all possible combina-
tions among factors and levels are tested. It is useful for estimation
of the factor main effects over the process. The first objective of
this kind of strategy is to obtain the maximum amount of informa-
tion about the effect of the parameters over the process with a
minimum of experimental runs (Ross, 1991).

In addition to the fact of requiring a smaller number of experi-
ments, orthogonal array employed in Taguchi’s methods allow to
test factors having a different number of levels. That makes it pos-
sible to perform experiments containing some factors having two
levels, and some having four levels, for example. For a given exper-
iment designed with three factors, one of them containing four lev-
els and the other containing two levels each, without investigating
interaction among factors, the orthogonal array L8 from the
Taguchi method is as shown in Table 1, where the numeral in
column ‘Number of experiment’ specify the number of the experi-
mental run and the numeral in columns ‘Factor A’, ‘Factor B’ and
‘Factor C’ specify the levels of the respective factor.

4.1. Analysis of experiments

The function loss of quality, in Taguchi’s methods, varies
depending on the type of problem under study. Problems may be
classified as being of type ‘‘the smaller, the better’’, ‘‘the bigger,
the better’’ and ‘‘nominal is better’’. In this work, the goal is the
minimization of the output analyzed, what makes it a ‘‘the smaller,
the better’’ type of problem. For such a problem, the signal to noise
ratio to be maximized is expressed by Eq. (5) (Ross, 1991):

g ¼ �10log10
1
n

Xn

i¼1

y2
i

" #
ð5Þ

where g is the value of the signal to noise ratio, yi is the value of the
deviation regarding the quality attribute whose tolerance is of the
type ‘‘the smaller, the better’’ and n stands for the number of experi-
ments executed. Data experimentally obtained is analyzed according
to their average, valor of signal to noise ratios and standard deviation

Table 1
L8 orthogonal array for an experiment involving three factor: one factor with 4 levels
and two factor with 2 levels each.

Number of the experiment Factor A Factor B Factor C

1 1 1 1
2 1 2 2
3 2 1 1
4 2 2 2
5 3 1 2
6 3 2 1
7 4 1 2
8 4 2 1

Fonte: Minitab�. Statistical Software Release 15.0.
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of the runs. The goal of the analysis is to obtain the levels of the factors
involved that lead to the minimization of the function loss of quality
and to the maximization of the signal to noise ratio (Kilickap, 2010).

4.2. S. D. Ratio

The output variable chosen as measure to compare the influ-
ence of the different design factors in the performance of the net-
work is the S. D. Ratio obtained during the testing phase. In a
regression problem, S. D. Ratio is defined as the ratio between
the standard deviation of the residuals by the standard deviation
of data obtained experimentally. The closer to zero the value of
S. D. Ratio is the better the prediction capability of the model.
S. D. Ratio corresponds to one minus the variance explained by
the model (Ross, 1991).

4.3. Inference about the mean of a population having known variance

The sample mean X is an unbiased estimator of the mean l of a
population, since the variance r of the population is known. If the
conditions of the central limit theorem apply, the distribution of X
is approximately normal with mean l and variance given by r=

ffiffiffi
n
p

,
where n is the size of the sample. To test the null hypothesis l = l0,
the test statistic given by Eq. (6) can be employed (Montgomery,
2009):

Z0 ¼
ffiffiffi
n
p
ðX � l0Þ

r
ð6Þ

The null hypothesis that the means are equal is rejected if the
resulting P-value is inferior the level of significance adopted. This
test, according to Montgomery (2009) can be used provided that
the size of the sample is superior to thirty.

4.4. Levene’s test

The Levene’s test is employed to test the equality of variances
coming from different samples. A null hypothesis that variances
of the samples involved are equal is tested at a given level of signif-
icance. Such a test is recommended when there is no evidence that
the samples testes follow the normal distribution. The null hypoth-
esis is rejected provided that the situation expressed by Eq. (7)
takes place (Montgomery, 2009):
W > Fða;k�1;N�kÞ ð7Þ

where F is the critical upper value of a F distribution having k � 1
and N � k degrees of freedom, at the level of significance a and W
is the test statistic given by Eq. (8) (Montgomery, 2009).

W ¼ ðN � kÞ �
Pk

i�1NiðZi: � Z::Þ2

ðk� 1Þ �
Pk

i�1

PNi
j¼1ðZij � Zi:Þ2

ð8Þ

where N stands for the total number of reading involved in the
samples under test, k is the number of samples being compared,
Ni is the number of readings in each sample, Z:: is the overall mean
of the samples, Zi: is the mean of sample i and Zij is given by Eq. (9)
(Montgomery, 2009).

Zij ¼ jYij � Yi:j ð9Þ

where Yij stands for the j-esimal reading of the i-esimal sample and
Yi: to the mean value of the i-esimal sample.

5. Experimental procedures

The experimental procedure consisted in the following steps:

– Cutting operations intended to build a database to train and
select the ANNs.

– Generation of training and testing data sets.
– Simulation experiments, planned according to Taguchi’s meth-

ods, intended to identify best network topologies.
– Confirmatory experiments intended to validate the network

topologies identified during planned experiments.

5.1. Machining tests

The workpieces employed were made with dimensions of
£49 � 50 mm. All of them were quenched and tempered. A total
of 60 workpieces of AISI 52100 steel bars of the same lot were em-
ployed during the experiments, where chemical composition
shown in Table 2. Firstly they were machined using a Romi S40
lathe. After this heat treatment, their hardness was between 53
and 55 HRC, up to a depth of 3 mm below the surface. Hardness
profile was measured at six points in each workpiece and no signif-
icant differences in hardness profile were detected.

The machine tool used was a CNC lathe with power of 5.5 kW in
the spindle motor, with conventional roller bearings. The mixed
ceramic (Al2O3 + TiC) inserts used were coated with a very thin
layer of titanium nitride (TiN) presenting a chamfer on the edges.
The tools employed in the study were produced by Sandvik
Coromant, class GC6050, CNGA 120408 S01525. The tool holder
presented negative geometry with ISO code DCLNL 1616H12 and
entering angle vr = 95�.

In this study, cutting speed (V), feed (f), and depth of cut (d)
were employed as controlling variables. Those cutting conditions
varied as follows: 200 m/min 6 V 6 240 m/min, 0.05 mm/r 6 f 6
0.10 mm/r and 0.15 mm 6 d 6 0.30 mm. The adopted values corre-
spond to the operational limits enlisted by the toolmaker on its
catalog (Sandvik Coromant, 2010). The cutting experiments used
to train and test the ANN followed a RSM design. This original
CCD design is formed by three distinct groups of experimental
points: (i) a full factorial design with 23 runs, (ii) six axial points
and (iii) four center points, resulting in 18 runs. Using three repli-
cates for each run and augmenting the experimental design with 6
face centered runs, the entire design was built with 60 runs, as can
be seen in Fig. 3. Then, 60 workpieces of AISI 52100 hardened steel
were turned with 60 different configurations. In each of 60 work-
pieces, ten surface roughness measurements were done, resulting
in a data set for training and testing sets for the ANN with 600
cases.

A Taylor Hobson rugosimeter, model Surtronic 3+ was em-
ployed for roughness measurements, as well as a Mitutoyo
micrometer. Roughness measures were taken after the tenth
machining stroke. The 10 roughness measures were collected as
following: three measurements at each extremity (chuck and live
centre) and four at the middle point. All measures were taken after
the end of tool life. The criteria adopted for determining the end of
tool life end was tool flank wear VBmax equal or greater than
0.3 mm.

5.2. Experimental design for selection of ANN parameters

The problem to be addressed by the designed experiment was
to identify the best topology for roughness prediction. The experi-
mental factors considered were the design parameters of the RBF
networks: the algorithm for calculation of the radial spread factor
(X1), with four levels; the number of radial units present on the

Table 2
Chemical composition of the AISI 52100 steel (weight percentage).

C Si Mn Cr Mo Ni S P

1.03 0.23 0.35 1.40 0.04 0.11 0.001 0.01

7780 F.J. Pontes et al. / Expert Systems with Applications 39 (2012) 7776–7787
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hidden layer of the network (X2), with two levels, and the algo-
rithm for calculation of the center location of radial functions
(X3), also with two levels. To achieve the established goals for the
study, distinct experiments were conducted for different sizes of
data sets. Eight data sets of different sizes were formed, containing
24, 30, 48, 60, 240, 300, 400 and 500 examples. The first data set
contained the first 24 examples ( V, f, d, Ra); the second training
set contained the first 30 examples ( V, f, d, Ra), and so on, up to
the last training set, containing 500 examples. Two thirds of the
examples contained in each data set were used as training set for
networks and one third was employed as a selection set. The
remaining 100 examples did not take part in any network training
activity and were spared to be used as test cases during confirma-
tion runs.

Regarding the algorithm for calculation of the radial spread fac-
tor, two distinct algorithms were tested: the isotropic and the K-
Nearest algorithms (Haykin, 2008). For the isotropic algorithm
two levels of its scaling factor were investigated, based on results
of preliminary experiments. For the K-Nearest algorithm, the influ-
ence of its defining factor K was investigated. Once more, two dif-
ferent values of the factor were selected for testing, based on
results of preliminary experiments.

Regarding the number of radial units, the levels of the factor
were defined as proportions between that number of radial units
and the number of training examples, as suggested by Haykin
(2008). The proportions established as levels of the factor were
50% and 100% of the number of examples available for training in
each experiment.

Two distinct algorithms for calculation of the center location of
radial functions were tested: the Sub-Sampling algorithm and
K-Means algorithm Haykin (2008). Each algorithm was established
as a level of the experimental factor. As a consequence, the orthog-
onal array employed for each of the eight experiments was a L8
Taguchi array having three factors. The factors and their respective
levels are detailed in Table 3.

5.3. Factor and levels adopted for experimental planning

Execution of each experimental arrangement consisted in con-
figuring the network as specified by the experimental design and
training the ANN. The Neural Networks suite of the statistical soft-
ware package Statistica� release 7.1 was employed. Sixty replica-
tions were performed for each network configuration, meaning
that a network configuration under test was independently initial-
ized and trained for 60 times, in order to mitigate risks associated

to the random initialization of synaptical weights (Haykin, 2008).
Examples were presented in a random sequence to the network
during training.

Regarding pre and post processing, data was normalized
to the interval (0, 1) to be applied to network inputs and re-scaled
to the original dominium at the output. Results were stored under
the format of files produced by the software package, containing
the prediction of the networks for test cases. The results were com-
piled to identify factor levels favouring network performance in
prediction, to investigate relative importance of each factor.

The best network configurations for each data set were kept and
subjected to confirmation runs. Those consisted in applying the
networks to predict surface roughness for the 100 examples spared
from training, in order to assess network generalization capability.

6. Results and discussion

All the analysis was made by using statistical software Mini-
tab�, release 15. Table 4 displays the mean values of output S. D.
Ratio for all the runs of the eight experiments conducted. Table 5
displays the standard deviation associated to the runs.

The foreseen analysis for the average output data, signal to
noise ratios and for the standard deviations were performed. Those
analyses consider the amount of the difference between the big-
gest and the smallest effect calculated for a given level of a factor.

For the experiments conducted, the analysis provides values of
the main effects of each factor on each analyzed response (output
average, signal to noise ratio and standard deviation), as well as a
ranking of the impact of the factor on those figures. This informa-
tion is summarized in Tables 6–8. In the section associated to sig-
nal to noise ratio, a value of 1 in the line rank indicates the most
influential factor in regard to signal to noise ratio and a value of
3 in the same line, the less influential one. In the section of each
table devoted to the analysis of the output average, a value of 1
in line rank denotes the most influential factor in reducing the
average of the output and a value of 3, the less influential factor
in reducing the average. In the section devoted to the analysis of
the standard deviations of the output, a value of 1 in line rank de-
notes the most influential factor in minimizing the standard devi-
ation of the output, and a value of 3, the less influential factor in
reducing the standard deviation.

It is perceived that, in all the cases and for the three analyses per-
formed, the algorithm for determination of the spread for the radial
function was appointed as the most influential factor. In regard to
minimization of S. D. Ratio and maximization of the signal to noise
ratio, the number of radial units was appointed as the second most
influential factor in all cases, but two experiments, those involving
24 and 48 training cases. In these two experiments, the second most
influential factor was the algorithm for calculation of centers.
Regarding minimization of standard deviation, the analysis ap-
pointed the same result for the eight experiments, being the num-
ber of radial units appointed as the second most influential one.

Figs. 4–6 show, as an example, graphs of the main effects for the
experiment conducted with the training set of size 300. By those
graphs one can figure out the relative importance of each effect.
For each analysis performed S. D. Ratio average, signal to noise ra-
tio and S. D. Ratio standard deviation, the bigger the difference be-
tween the main effects of a given level of a factor, the bigger the
influence of that factor. In the graph one can also figure out the lev-
els of the factors the analysis points out as those that will cause the
network to perform better in the task of prediction.

In accordance to what is shown in Figs. 4–6 and analyzing the
results from the Taguchi’s analysis, the levels of the factors pointed
as those that lead to minimum S. D. Ratio average and S. D. Ratio
standard deviation, as well as maximum robustness among all

Fig. 3. Central Composite Design (CCD) augmented with hybrid points.
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Table 3
Factors and levels involved in the experiments.

Factor Number of
levels

Level 1 Level 2 Level 3 Level 4

Algorithm selection of spread factor 4 Isotropic Deviation Scaling
Factor = 1

Isotropic Deviation Scaling
Factor = 10

K-Nearest
neighbors = 5

K-Nearest
neighbors = 10

Algorithm calculation of centers of
radial function

2 Sub-sampling K-Means – –

Number of radial units 2 Half the number of training
cases

Equal to the number of
training cases

– –

Table 4
Mean values of S. D. Ratio obtained during the experiments conducted.

Number of run Number of cases in the training set

24 30 48 60 240 300 400 500

1 0.628802 0.601076 0.522039 0.518149 0.525391 0.499767 0.520130 0.533464
2 6.723140 31.596046 97.639313 25.554231 8.539650 136.409844 39.964778 9.638446
3 0.020493 0.017081 0.010203 0.007873 0.000161 0.000055 0.000043 0.000027
4 0.015347 0.016409 0.001517 0.159770 0.000080 0.000059 0.000083 0.000042
5 0.300682 2.059012 0.154282 11.769162 0.302916 33.274003 28.585290 0.252391
6 0.264722 0.253606 0.132365 0.112056 0.097023 0.102912 0.090886 0.080076
7 0.209856 0.146091 0.062477 0.049657 0.188020 31.535303 0.058813 1.332922
8 0.219666 0.165157 0.075796 0.058061 0.046739 0.050059 0.040693 0.036463

Table 5
Values of standard deviation of the output obtained during the experiments conducted.

Number of run Number of cases in the training set

24 30 48 60 240 300 400 500

1 0.097507 0.054823 0.056103 0.062090 0.044123 0.036352 0.038504 0.040225
2 25.610531 69.309196 284.475841 165.438803 24.592671 433.037908 116.382653 62.502353
3 0.007782 0.005116 0.001351 0.002331 0.000048 0.000032 0.000023 0.000013
4 0.001007 0.000000 0.000130 0.575948 0.000030 0.000026 0.000058 0.000035
5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000
6 0.069950 0.067611 0.028554 0.022283 0.012444 0.016940 0.014007 0.009498
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
8 0.074861 0.042196 0.016699 0.013782 0.008525 0.012590 0.009017 0.007559

Table 6
Values of main effects for the experiment conducted with 30 training cases.

Level Signal to noise ratios Means Standard deviations

Algorithm for
center spread

Algorithm for
center location

Number
radial units

Algorithm for
center spread

Algorithm for
center location

Number
radial units

Algorithm for
center spread

Algorithm for
center location

Number
radial units

1 �13.6149 15.4594 19.5973 25.3903 0.3604 0,1508 13.5267 0.48849 0.15330
2 38.3478 9.2724 5.1345 0.0097 12.6813 12.8908 0.0100 6.72432 7.05952
3 5.6830 0.5951 0.7937
4 19.0478 0.0884 0.0951

Delta 51.9627 6.1869 14.4628 25.3806 12.3209 12.7400 13.5167 6.23583 6.90622

Rank 1 3 2 1 3 2 1 3 2

Table 7
Values of main effects for the experiment conducted with 240 training cases.

Level Signal to noise ratios Means Standard deviations

Algorithm for
center spread

Algorithm for
center location

Number of
radial units

Algorithm for
center spread

Algorithm for
center location

Number of
radial units

Algorithm for
center spread

Algorithm for
center location

Number of
radial units

1 �8.3651 29.4960 34.9376 8.42546 0.13258 0.09181 5.84575 0.17188 0.10680
2 81.4415 27.9389 22.4973 0.00008 4.16215 4.20292 0.00006 2.85952 2.92459
3 18.2929 0.10310 0.13700
4 23.5004 0.06082 0.07999

Delta 89.8066 1.5570 12.4402 8.42538 4.02956 4.11111 5.84570 2.68763 2.81779

Rank 1 3 2 1 3 2 1 3 2
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the conditions tested are summarized in Table 9. It was found that,
except for one case, the configurations of factors are the same. In
regard to signal to noise ratio, in six out of eight experiments,
the configurations appointed as the best for robustness are the
same. Regarding standard deviation, the configuration of factor
pointed out as the best for reducing variance was the same in se-
ven out of eight experiments.

For each experiment, nonetheless, tests of hypothesis for infer-
ence about the mean of a population using Z statistic (Montgomery,
2009), were applied. Tests using statistic t of Student and analysis of
variance were not applied because preliminary statistical tests did
not present statistical evidence of equal variance among samples,
nor that they follow a normal distribution, both of which would
be required for using those techniques.

In each experiment, the mean value of a given configuration
was compared (by using the Z test) to the value of the mean of each
other configuration, at the level of significance of 0.05. The null
hypothesis assumed was the mean of the tested configuration to
be equal to the other mean. The objective of these tests was to
establish statistically which configuration presented the smallest
S. D. Ratio among the configurations tested.

By comparing results obtained from Taguchi’s analysis and
those obtained from the Z tests, some discrepancies were found.
In the experiments with training sets containing 24, 48 and 240
cases, the analysis of Taguchi’s pointed to a configuration that
was not the one possessing the smallest average of S. D. Ratio
among the runs of those experiments. In addition, for the experi-
ment with a training set containing 60 cases, the analysis pointed

Fig. 4. Main effects on average of S. D. Ratio conducted with 300 training cases.

Fig. 5. Main effects on signal to noise ratio conducted with 300 training cases.

Table 8
Values of main effects for the experiment conducted with 400 training cases.

Level Signal to noise ratios Means Standard deviations

Algorithm for
center spread

Algorithm for
center location

Number of
radial units

Algorithm for
center spread

Algorithm for
center location

Number of
radial units

Algorithm for
center spread

Algorithm for
center location

Number of
radial units

1 �23.630 25.0354 41.2886 247.207 16.761 0.086 206.280 23.694 0.106
2 89.577 23.8854 7.6323 0.000 123.541 140.216 0.000 103.055 126.643
3 �5.662 33.386 47.207
4 37.556 0.011 0.011

Delta 113.207 1.1499 33.6563 247.207 106.779 140.130 206.280 79.361 126.537

Rank 1 3 2 1 3 2 1 3 2
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to a configuration that was not part of the orthogonal array em-
ployed (i.e. that was not part of the experiments).

For the experiments with 24, 48 and 240 cases (those where
discrepancies were found), a new statistical comparison was per-
formed with use of the Z test. Samples of the configurations
pointed by Taguchi’s analysis were compared to mean values
pointed by the first Z test as the lowest. For the experiment with
60 cases, the configuration pointed by the Taguchi’s analysis was
built up and an extra experimental run was conducted, using the
appropriate training set and the same number of repetitions of
all the other runs. After that, a new Z test was performed to com-
pare the mean values for this new run to the smallest of the origi-
nal experiment. Once more, the null hypothesis was that the
average of the S. D. Ratio of the sample pointed by Taguchi’s anal-
ysis was equal to the average of better performance among exper-
imental runs. Results for these tests are displayed in Table 10.

Regarding Table 10, it is noted that configurations pointed by
Taguchi’s analysis possess bigger means (and so a poorer

performance) than those of the experimental runs, as can be veri-
fied by the P-values equal to zero. This can indicate the existence
of interactions among the factors involved in the experiment, what
could not be detected due to the simple orthogonal array employed.

The best overall configurations obtained for prediction of
roughness average (Ra), average of S. D. Ratio, as well as values of
standard deviations obtained for those configurations are shown
in Table 11.

Data displayed in Table 11 does not allow to conclude for the
equality or inequality of the outputs obtained. In order to compare
statistically the best configurations obtained for each experiment,
tests were applied to compare variances and mean values for each
of the configurations to which data in Table 11. To test variances
among configurations, Levene’s tests were applied for a null
hypothesis of equal variance among each possible pair of configu-
rations at a level of significance of 0.05. This test was chosen to
compare pairs of variance because preliminary tests did not pres-
ent evidence that samples follow normal distribution. The results
obtained from Levene’s tests can be observed in Table 12, where
a P-value superior to the significance level adopted means that
there is no statistical evidence of difference among pairs of vari-
ance and a P-value inferior to 0.05 evidences difference between
the variances of two configurations under test.

Analysis of Table 12 indicates that there is no evidence of differ-
ence in the variance for the best network obtained for the training
set containing 24 cases and those networks obtained for training
sets containing 30, 48, 240, 300, 400 and 500 training cases. It also
evidences that variance of the best network obtained for the train-
ing set containing 30 cases is inferior to that of networks obtained
for training sets containing more cases.

The results of the tests provide evidence that, at the level of sig-
nificance adopted, the variance of the best network obtained for the
training set containing 48 cases is inferior to that of the best net-
work obtained from the training set containing 60 cases. The results
show that there is no statistical evidence, at the level of significance
adopted, of difference between the variance of the best network ob-
tained for the 48 cases training set and that of the best networks ob-
tained for 240 and 300 training cases. On the other hand, the results
show that the best network obtained for the 48 cases training set
present a variance that is superior to that observed for the best net-
work obtained using 400 and 500 training cases. For its turn, the
network obtained using 60 training cases presents strong evidence
of variance superior to that of the best networks obtained for all
training set containing a bigger number of cases.

Regarding the best network obtained using 240 training cases,
the tests provide no statistical evidence of difference of its variance

Fig. 6. Main effects on standard deviation of S. D. Ratio conducted with 300 training cases.

Table 9
Configurations pointed out by the analysis as best ones in each criterion, for each
experiment.

Number
of test
cases

Best configuration
for minimizing
mean of S. D. Ratio

Best configuration
for maximizing
signal to noise ratio

Best configuration
for reducing
standard deviation

24 2:1:1 2:1:1 2:1:1
30 2:1:1 2:1:1 2:1:1
48 2:1:1 2:1:1 2:1:1
60 4:1:1 4:1:1 4:1:1

240 2:1:1 2:1:1 2:1:1
300 2:1:1 2:2:1 2:1:1
400 2:1:1 2:1:1 2:1:1
500 2:1:1 2:1:1 2:1:1

Table 10
Comparison between configurations pointed by Taguchi’s analysis with smallest S. D.
Ratio (discrepant cases).

Number
of test
cases

Mean of the
configuration
pointed as the
best

S. D.
configuration
pointed by
analysis

Smallest
mean
observed
during
test

S. D. to
smallest
observed
mean

P-value
resulting
from
second Z
test

24 0.020493 0.007782 0.015347 0.001007 0.000
48 0.010203 0.001351 0.001517 0.000130 0.000
60 0.076326 0.028080 0.007873 0.002331 0.000

240 0.000161 0.000048 0.000080 0.000030 0.000
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and that of the best networks obtained using 300 and 400 training
cases. Conversely, the test provide evidence that the variance of the
best network obtained using 240 training cases is superior to that
observed in the best network obtained using 500 cases.

The result of the Levene’s tests for the best network obtained for
the training set containing 300 cases, at the level of significance of
0.05, provides no evidence of difference between its variance and
that of the best network obtained for 400 cases. Conversely, the re-
sults indicate that the variance of the best network obtained for
300 cases is superior to that obtained for 500 cases. Regarding
the training set containing 400 cases, the test did not provide evi-
dence of difference between the variance of the best network ob-
tained for that training set and the variance of the best network
obtained for 500 training cases, what can be noted by the P-value
equal to 0.01.

In order to compare means of the S. D. Ratio output from the
best network configuration obtained in each experiment, a third
set of Z-tests (test for inference about the mean of a population)
was applied. The tests compared, at a level of significance of

0.05, the mean of S. D. Ratio of the best configuration obtained in
one experiment to the mean of S. D. Ratio of the best configuration
obtained in the experiment with training set of size immediately
inferior. The results of these tests can be observed in Table 13.

Analysis of Table 13 reveals that there is sufficient evidence, at
the level of significance adopted, that mean value of S. D. Ratio of
the best network obtained using 30 is superior to that obtained
using 24 cases. There is also evidence that the mean value of S.
D. Ratio of the best network obtained using 48 training cases is
inferior to that of the best network obtained using 30 cases.

Regarding the best network obtained using 60 training cases,
there is evidence that its mean value of S. D. Ratio is superior to
that of the best network obtained using 48 cases. From this point
on it can be noted, and there is statistical evidence from the tests,
that the mean values of S. D. Ratio of the best network obtained
using a given training set is inferior to the mean values of S. D Ra-
tion obtained for the training set of size immediately inferior.

Exception made to the experiments involving training sets con-
taining 30 cases and 60 cases, there is a trend towards reduction of
mean of S. D. Ratio and variance as the number of training cases in-
creases. This fact suggests a better performance of networks in pre-
diction of roughness average (Ra) as more training cases are made
available. A box-plot graph for the best network configurations ob-
tained in each experiment is shown in Fig. 7. In that graph one can
observe that mean and dispersion are bigger in the experiments
involving 24 or 30 training cases, and that mean and dispersion
have a tendency to be reduced in experiments involving more
training cases. The exception observed in the experiment involving
60 training cases, in which even the best network present a mean
value of S. D. Ratio and dispersion superior to values obtained
using 48 cases, can be clearly observed in Fig. 7.

It can be observed that, even in situations involving a small
number of training cases (as the one involving 24 or 30 cases),
RBF networks presented a good performance in the task of predic-
tion of roughness average (Ra) as can be seen in Table 11. This sug-
gests that RBF’s can constitute a valid e economically viable
alternative to the task in turning process of SAE 52100 – 55 HRC
steel with mixed ceramic tools.

Table 11
Configuration having best performance obtained for the experiments and respective value of mean S. D. Ratio for roughness average (Ra).

Size of training
set

Algorithm for selection of spread of radial
function

Algorithm for
calculation
of centers of radial
function

Number of radial
units

Mean S. D. Ratio for
configuration

Associated standard
deviation

24 Isotropic Deviation Scaling Factor = 10 K-Means 24 0.015347 0.001007
30 Isotropic Deviation Scaling Factor = 10 K-Means 30 0.016409 0.000000
48 Isotropic Deviation Scaling Factor = 10 K-Means 48 0.001517 0.000130
60 Isotropic Deviation Scaling Factor = 10 Sub-Sampling 30 0.007873 0.002331

240 Isotropic Deviation Scaling Factor = 10 K-Means 240 0.000080 0.000030
300 Isotropic Deviation Scaling Factor = 10 Sub-Sampling 150 0.000055 0.000032
400 Isotropic Deviation Scaling Factor = 10 Sub-Sampling 200 0.000043 0.000023
500 Isotropic Deviation Scaling Factor = 10 Sub-Sampling 250 0.000027 0.000013

Table 12
P-values resulting from Levene’s tests applied to pairs of best networks obtained from each experiment.

Size of training set 24 30 48 60 240 300 400
Observed variances 1.013E�06 7.08E�19 1.683E�08 5.433E�06 8.959E�10 1.007E�09 5.304E�10

P-values obtained from Levene’s test
30 7.08E�19 0.153 – – – – – –
48 1.683E�08 0.282 0.005 – – – – –
60 5.433E�06 0.000 0.000 0.000 – – – –

240 8.959E�10 0.203 0.000 0.118 0.000 – – –
300 1.007E�09 0.203 0.000 0.125 0.000 0.938 – –
400 5.304E�10 0.189 0.000 0.061 0.000 0.124 0.150 –
500 1.725E�10 0.174 0.000 0.024 0.000 0.000 0.001 0.010

Table 13
P-values resulting from Z-test for the best network configurations obtained in each
experiment.

Number of
training
cases

Mean values of S.
D. Ratio for
best network
obtained for
training set

Number of
training cases in
the
training set of
size immediately
inferior

Mean of S. D.
Ratio for best
network
obtained for
training
set of size
immediately
inferior

P-
value

30 0.016409 24 0.015347 0.000
48 0.001517 30 0.016409 0.000
60 0.007873 48 0.001517 0.000

240 0.000080 60 0.007873 0.000
300 0.000055 240 0.000080 0.000
400 0.000043 300 0.000055 0.000
500 0.000027 400 0.000043 0.000
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7. Conclusions

The use of DOE methodology proved to be an efficient tool for
the design of neural networks of RBF architecture for surface
roughness prediction in the turning of AISI 52100 hardened steel.
The methodology made it possible to identify network configura-
tions presenting high degree of accuracy and reduced variability
in the proposed task. Results obtained show that RBF ANNs trained
with only 30 examples can present mean value S. D. Ratio equal to
0.016409, for the worst case corresponding to a training set. This
fact suggests that RBF networks designed with the use of DOE
methodology can be an effective, efficient and affordable alterna-
tive for surface roughness prediction in hard turning.

The algorithm for calculation of the radial spread factor was the
most influential among the three factors under investigation. The
isotropic algorithm with scale factor equal to 10 yielded the best
results. The influence of that factor becomes dominant as the num-
ber of examples available for training increases. The second most
influential factor was the number of radial units on the network
hidden layer. The less influential factor was found to be the algo-
rithm for calculation of center locations. The influence of this factor
was negligible in almost all experiments. The conclusion is that the
option for any of the algorithms tested implied in no pronounced
difference in network performances. Such finding can further sim-
plify the design of the ANN to be used for roughness prediction in
AISI 52100 hard turning.

It must be emphasized that conclusions obtained in this work
cannot be extrapolated to other neural network architectures,
other kind of machining operations, other materials or tools. The
approach can, nonetheless, be recommended to different network
architectures. Further investigation is required in order to evaluate
the nature and the impact of the interactions among design factors
on the network performance. In some experiments some discrep-
ancies were found among configurations pointed out by the analy-
sis as the best ones and values experimentally observed. This fact
suggests the existence of interaction between factors tested, what
could not be quantified due to the orthogonal arrays employed.
The results show, nonetheless, that RBF networks can present good
performance in the task of prediction of roughness average.
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