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In practical situations, solving a given problem usually calls for the systematic and simultaneous analysis of more than one objective
function. Hence, a worthwhile research question may be posed thus: In multiobjective optimization, what can facilitate for the
decision maker choosing the best weighting? Thus, this study attempts to propose a method that can identify the optimal weights
involved in a multiobjective formulation. The proposed method uses functions of Entropy and Global Percentage Error as selection
criteria of optimal weights. To demonstrate its applicability, this method was employed to optimize the machining process for
vertical turning, maximizing the productivity and the life of cutting tool, and minimizing the cost, using as the decision variables
feed rate and rotation of the cutting tool. The proposed optimization goals were achieved with feed rate = 0.37 mm/rev and rotation
= 250 rpm. Thus, the main contributions of this study are the proposal of a structured method, differentiated in relation to the
techniques found in the literature, of identifying optimal weights for multiobjective problems and the possibility of viewing the
optimal result on the Pareto frontier of the problem. This viewing possibility is very relevant information for the more efficient

management of processes.

1. Introduction

As companies today face fierce and constant competition,
managers are under increasing pressure to reduce their costs
and improve the quality standards of products and processes.
As part of their response to this demand, managers have
pursued rigorous methods of decision making, including
optimization methods [1].

In many practical fields, such as engineering design,
scientific computing, social economy, and network commu-
nication, there exist a large number of complex optimization
problems [2] and, because of this, optimization techniques, in
recent years, have evolved greatly, finding wide application in
various types of industries. They are now capable, thanks to a
new generation of powerful computers, of solving ever larger
and more complex problems.

According to [1], optimization is the act, in any given
circumstance, of obtaining the best result. In this context,

the main purpose of decision making in industrial processes
is to minimize the effort required to develop a specific task
or to maximize the desired benefit. The effort required or the
benefit desired in any practical situation can be expressed as
a function of certain decision variables. This being the case,
optimization can be defined as the process of finding the
conditions that give the maximum or minimum value of a
function [1]. This function is known as the objective function.

In practical situations, however, solving a given problem
usually calls for the systematic and simultaneous analysis of
more than one objective function giving rise to multiobjective
optimization [3].

In multiobjective problems, it is very unlikely that all
functions are minimized simultaneously by one optimal
solution x*. Indeed, the multiple objectives (1) have conflicts
of interest [1]. What becomes of great relevance to these
types of problems, according to [1], is the concept of a
Pareto-optimal solution, also called a compromise solution.



The author in [1] refers to a feasible solution x* as Pareto-
optimal if no other feasible solution z exists such that f;(z) <
fitx™), i = L2,...,m, with fi(z) < fi(x") in at least
one objective j. In other words, a vector x™ is said to be
Pareto-optimal if no other solution z can be found that
causes a reduction in the objective function without causing
a simultaneous increase in at least one of the other objectives.
Pareto-optimal solutions occur because of the conflicting
nature of the objectives, where the value of any objective
function cannot be improved without impairing at least one
of the others. In this context, a trade-off represents giving up
one objective to improve another [4].

The purpose of multiobjective optimization methods is to
offer support and ways to find the best compromise solution.
Playing important roles in this are a decision maker and
his preference information [4]. A decision maker, according
to [4], is an expert in the domain of the problem under
consideration and who typically is responsible for the final
solution. In order to define the relative importance of each
objective function, the decision maker must assign them
different weights.

Because a characteristic property of multiobjective opti-
mization is the objective function weighting problem, how a
decision maker is involved with the solution of this problem
is the basis for its classification. According to [5, 6], the classes
are as follows: (1) no-preference methods: methods where no
articulation of preference information is made; (2) a priori
methods: methods where a priori articulation of preference
information is used; that is, the decision maker selects the
weighting before running the optimization algorithm; (3)
interactive methods: methods where progressive articulation
of preference information is used; that is, the decision maker
interacts with the optimization program during the optimiza-
tion process; and (4) a posteriori methods: methods where a
posteriori articulation of preference information is used; that
is, no weighting is specified by the user before or during the
optimization process. However, as no classification can be
complete these classifications are not absolute. Overlapping
and combinations of classes are possible and some methods
can be considered to belong to more than one class [5]. This
paper considers the a posteriori method in consonance with
generate-first-choose later approach [7].

A multiobjective problem is generally solved by reducing
it to a scalar optimization problem, and, hence, the term
scalarization. Scalarization is the converting of the problem,
by aggregation of the components of the objective functions,
into a single or a family of single objective optimization
problems with a real-valued objective function [5]. The
literature reports different scalarization methods. The most
common is the weighted sum method.

The weighted sum method is widely employed to generate
the trade-off solutions for nonlinear multiobjective optimiza-
tion problems. According to [9], a biobjective problem is
convex if the feasible set X is convex and the functions are also
convex. When at least one objective function is not convex,
the biobjective problem becomes nonconvex, generating
a nonconvex and even unconnected Pareto frontier. The
principal consequence of a nonconvex Pareto frontier is that
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points on the concave parts of the trade-off surface will not
be estimated [10]. This instability is due to the fact that the
weighted sum is not a Lipshitzian function of the weight w
[11]. Another drawback to the weighted sums is related to
the uniform spread of Pareto-optimal solutions. Even if a
uniform spread of weight vectors is used, the Pareto frontier
will be neither equispaced nor evenly distributed [10, 11].

Given its drawbacks, the weighted sum method is not
used in this paper. Instead, the paper employs a weighted
metric method, as cited by [12], in association with a normal
boundary intersection method (NBI), as proposed by [13].
Reference [13] proposed the NBI method to overcome the
disadvantages of the weighted sum method, showing that
the Pareto surface is evenly distributed independent of the
relative scales of the objective functions. It is for this feature
that this study uses the NBI method to build the Pareto
frontier.

The weighting issue has been discussed in literature for
at least thirty years. Reference [14] proposed an approach
to helping to determine proper parameters in linear control
system design. In the case that the desired specifications
are not given explicitly, this approach applies an interactive
optimization method to search the most suitable weights. The
shortcoming of this proposal is that the decision maker needs
to make pairwise comparisons of the response curves in each
iteration which becomes a problem when many iterations
are needed. Reference [15] determined an optimum location
for an undesirable facility in a workroom environment. The
author defined the problem as the selection of a location
within the convex region that maximizes the minimum
weighted Euclidean distance with respect to all existing facil-
ities, where the degree of undesirability between an existing
facility and the new undesirable entity is reflected through
a weighting factor. Reference [16] presented a multicrite-
ria decision making approach, named Analytic Hierarchy
Process (AHP), in which selected factors are arranged in
a hierarchic structure descending from an overall goal to
criteria, subcriteria, and alternatives in successive levels.
Despite its popularity, this method has been criticized by
decision analysts. Some authors have pointed out that Saaty’s
procedure does not optimize any performance criterion [17].

In the course of time, other methods for deriving the
priority weights have been proposed in literature, such as
geometric mean procedure [18, 19], methods based on con-
strained optimization models [20], trial and error methods
[21], methods using grey decision [22-24], methods using
fuzzy logic [3,18,19, 25, 26], and methods using simulated
annealing [26, 27].

Recently [28], dealing with multiobjective optimiza-
tion of time-cost-quality trade-off problems in construc-
tion projects, used Shannon’s entropy to define the weights
involved in the optimization process. According to the
authors, Shannon’s entropy can provide a more reliable
assessment of the relative weights for the objectives in the
absence of the decision maker’s preferences.

In the multiobjective optimization process, the decision
maker, as noted above, plays an important role, for it is the
decision maker that, sooner or later, obtains a single solution
to be used as the solution to his original multidisciplinary
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decision-making problem. Hence, a worthwhile research
question may be posed thus: In multiobjective optimization,
what can facilitate for the decision maker choosing the best
weighting?

In answering such a query, it was proposed to use
two objectively defined selection criteria: Shannon’s Entropy
Index [29] and Global Percentage Error (GPE) [30]. Entropy
can be defined as a measure of probabilistic uncertainty. Its
use is indicated in situations where the probability distri-
butions are unknown, in search of diversification. Among
the many other desirable properties of Shannon’s Entropy
Index, the following were highlighted: (1) Shannon’s measure
is nonnegative, and (2) its measure is concave. Property
1 is desirable because the Entropy Index ensures nonnull
solutions. Property 2 is desirable because it is much easier to
maximize a concave function than a nonconcave one [31]. The
GPE, as its name declares, is an error index. In this case, the
aim was to evaluate the distance of the determined Pareto-
optimal solution from its ideal value.

Thus, this study attempts to propose a method that can
identify the optimal weights involved in a multiobjective
formulation. The proposed method uses both a Normal
Boundary Intersection (NBI) approach along with Mixture
Design of Experiments and, as selection criteria of optimal
weights, has the functions of Entropy and Global Percentage
Error (GPE).

This paper is organized as follows: Section 2 presents
the theoretical background, including a discussion of Design
of Experiments, the NBI approach, and optimization algo-
rithm GRG. Section 3 presents the Metamodeling, showing
the proposal’s step-by-step procedure. Section 4 presents a
numerical application to illustrate the adequacy of the work’s
proposal. Finally, conclusions are offered in Section 5.

2. Theoretical Background

2.1. Design of Experiments. According to [32], an experiment
can be defined as a test or a series of tests in which purposeful
changes are made to the input variables of a process, aiming
thereby to observe how such changes affect the responses. The
goal of the experimenter is to determine the optimal settings
for the design variables that minimize or maximize the fitted
response [33]. Design of Experiments (DOE) is then defined
as the process of planning experiments so that appropriate
data is collected and then analyzed by statistical methods,
leading to valid and objective conclusions.

According to [32], the three basic principles of DOE are
randomization, replication, and blocking. Randomization is
the implementation of experiments in a random order such
that the unknown effects of the phenomena are distributed
among the factors, thereby increasing the validity of the
research. Replication is the repetition of the same test several
times, creating a variation in the response that is used to
evaluate experimental error. The blocking should be used
when it is not possible to maintain the homogeneity of the
experimental conditions. This technique allows us to evaluate
whether the lack of homogeneity affects the results.

The steps of DOE are [32] recognition and problem
statement; choice of factors, levels, and variations; selection of

the response variable; choice of experimental design; execu-
tion of the experiment; statistical analysis of data; conclusions
and recommendations.

Regarding the experimental projects, the most widely
used techniques include the full factorial design, the frac-
tional factorial design, the arrangements of Taguchi, response
surface methodology, and mixture Design of Experiments
[32].

For the modeling of the response surface functions, the
most used experimental arrangement for data collection
is the Central Composite Design (CCD). The CCD, for
k factors, is a matrix formed by three distinct groups of
experimental elements: a full factorial 2 or fractional 2577,
where p is the desired fraction of the experiment; a set of
central points (cp); and, in addition, a group of extreme levels
called axial points, given by 2k. The number of experiments
required is given by the sum: 2F " *~P) 4 ¢p + 2k. In CCD the
axial points are within a distance « of the central points, being
a= (29" [32].

In mixture Design of Experiments, the factors are the
ingredients or components of a mixture, and consequently,
their levels are not independent. For example, if x, x5, ..., x,,
indicate the proportions of p components of a mixture,
then ¥ w, = 1 [32]. The most used arrangement to
plan and conduct the mixture experiments is the simplex
arrangements [34].

A disadvantage with the simplex arrangements concerns
the fact that most experiments occur at the borders of
the array. This results in few points of the internal part
being tested. Thus, it is recommended, whenever possible,
to increase the number of experiments by adding internal
points to the arrangements, as the central points and also the
axial points. In the case of arrangements of mixtures, it is
noteworthy that the central points correspond to the centroid
itself.

2.2. Normal Boundary Intersection Approach. The normal
boundary intersection method (NBI) is an optimization
routine developed to find Pareto-optimal solutions evenly
distributed for a nonlinear multiobjective problem [13, 35].
The first step in the NBI method comprises the establishment
of the payoff matrix @, based on the calculation of the indi-
vidual minimum of each objective function. The solution that
minimizes the ith objective function f;(x) can be represented
as f;"(x!). When it replaces the optimal individual x;" in the
remaining objective functions, it becomes f;(x; ). In matrix
notation, the payoft matrix ® can be written as [36]

Ff:(’“;) fl(‘xz*) fl(x:n)

O=| filxq) - f&) - filx) [ O

LS (1) oo S () o S ()|



The values of each row of the payoft matrix @, which consists
of minimum and maximum values of the ith objective func-
tion f;(x), can be used to normalize the objective functions,
generating the normalized matrix @, such as [36]

v
7(x)=% i=1,....m. 2)

This procedure is mainly used when the objective functions
are written in terms of different scales or units. According
to [11], the convex combinations of each row of the payoft
matrix form the convex hull of individual minimum (CHIM).
The anchor point corresponds to the solution of single
optimization problem f;*(x;") [37, 38]. The two anchor points
are connected by the Utopia line [38].

The intersection point between the normal and the near-
est boundary of the feasible region from origin corresponds
to the maximization of distance between the Utopia line and
the Pareto frontier. Then, the optimization problem can be
written as [36]

Max D
(x,D)
st: Qw+Dii=F(x) (3)

x € Q.

This optimization problem can be solved iteratively for
different values of w, creating a Pareto frontier uniformly
distributed. A common choice for w was suggested by [13, 37]
asw, = 1- Y w,

The conceptual parameter D can be algebraically elimi-
nated from (3). For bidimensional problems, for example, this
expression can be simplified as [36]

Min  f, (%)
st fi0-f,0+2w-1=0 (4)
9; (x)=0
O<w<l.

2.3. Optimization Algorithm: Generalized Reduced Gradi-
ent. The generalized reduced gradient (GRG) algorithm,
according to [39], is one of the gradients methods that
presents greater robustness and efficiency, which makes it
suitable for solving a wide variety of problems. Moreover,
[40] highlighted the easy access to this algorithm: besides
being applicable to many nonlinear optimization problems
constrained or unconstrained, it is usually available in com-
mercial software, as Microsoft Excel.

GRG is known as a primal method, often called the
feasible direction method. According to [41], it has three
significant advantages: if the search process ends before con-
firmation of the optimum, the last point found is feasible due
to the fact that each point generated is viable and probably
close to the optimum; if the method generates a convergent
sequence, the limit point reaches at least a local minimum;
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most of the primal methods are generally absolute, not
depending on a particular structure, such as the convexity.
The GRG algorithm also has as one of its characteristics the
fact that it provides adequate global convergence, especially
when initialized close enough to the solution [42].

The search for the optimal point ends when the mag-
nitude of the reduced gradient reaches the desired value of
error (convergence criterion). Otherwise, a new search is
performed to find a new point in the direction of the reduced
gradient. This procedure is repeated until the best feasible
solution is found.

Once the problem has been modeled, it can be applied to
the previously proposed optimization system.

3. Metamodeling

Many of the techniques used in these strategies rely, at least in
one of its stages, on imprecise and subjective elements. Hence,
the analysis of weighting methods for multiple responses
demonstrates that, since a large portion of strategies still use
elements liable to error, significant contributions can still be
made.

The effort to contribute to this topic consists of developing
an alternative for the identification of optimal weights in
problems of multiobjective optimization. Statistical meth-
ods based on DOE are important techniques to model
objective functions. Indeed, for most industrial processes,
the mathematical relationships are unknown. The insertion
of optimization algorithms takes place during the step of
identifying optimal solutions for the responses and for the
weights, after they have been modeled by the statistical
techniques mentioned above. The GRG algorithm is used by
the Excel Solver function. The NBI approach is also used in
the search for optimal weights, using as selection criteria the
functions Entropy and Global Percentage Error (GPE).

As shown in Figure 1, to reach the weighting methodol-
ogy proposed in this work the following procedures are used.

Step 1 (experimental design). It is the establishment of the
experimental design and execution of experiments in random
order.

Step 2 (modeling the objective functions). It is the definition
of equations using the experimental data.

Step 3 (formulation of the problem of multiobjective opti-
mization). It is the aggregation of the objective functions
into a multiobjective formulation using a weighted metric
method.

Step 4 (definition of mixtures arrangement). In order to set
the weights to be used in the optimization routine described
in Step 3, a mixtures arrangement is done using Minitab 16.

Step 5 (solution of the optimization problem). The opti-
mization problem of Step 3 is solved for each experimental
condition defined in Step 4.

Step 6 (calculation of Global Percentage Error (GPE) and
Entropy). GPE of Pareto-optimal responses is calculated,
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(i) Experimental design

l

(ii) Modeling in the
objective functions

(vi) Calculation of Global
Percentage Error (GPE)
and Entropy

Arrangement
end?

(vii) Modeling of GPE and
l Entropy
(iii) Formulation of the \L
problem of mutiobjective
optimization (viii) Formulation of the
problem involving GPE
l and Entropy
(iv) Definition of mixtures J J/
t
arrangemen (ix) Defining the optimal
l weights

(v) Solution of the
optimization problem

End

FIGURE 1: Research process flowchart.

defining how far the point analyzed is from the objective
function’s ideal value, namely, the target.

Step 7 (modeling of GPE and Entropy). The canonical poly-
nomial mixtures for GPE and Entropy are determined, using
as data the results of the calculations from Step 6.

Step 8 (formulation of the problem of multiobjective opti-
mization involving GPE and Entropy functions). Once the
GPE and the Entropy functions have been defined, they are
aggregated into a formulation of multiobjective optimization,
using the NBI methodology. Through the use of this method,
itis possible to define a Pareto frontier with evenly distributed
solutions, regardless of the convexity of the functions.

Step 9 (defining the optimal weights). To achieve the optimal
weights, the relation between Entropy and GPE was maxi-
mized. These parameters are, in this proposal, the selection
criteria for optimal weights.

Once this procedure has been performed and the optimal
weights have been achieved, the multiobjective optimization
should be performed until it reaches the optimal values for
decision variables in the original problem.

4. Implementation of the Proposed Method

In order to apply the method proposed in this work, the
experimental data presented in [8] was used. The authors
aimed to optimize, with the application of DOE, a process
of vertical turning to determine the condition that led to a
maximum life of the cutting tool (mm), high productivity
(parts/hour), and minimum cost (US$/part).

X2

¢ (0,x)

(-1,+1) (+1,+1)

Ca0) ) (@0)

(-1,-1) (+1,-1)

¢ (0,—x)

FIGURE 2: Central Composite Design for k = 2.

For the modeling of the response surface functions, the
authors used the CCD. As previously mentioned, the CCD
for k factors is a matrix formed by three distinct groups of
experimental elements: a full factorial 2 or fractional 2577,
where p is the desired fraction of the experiment; a set of
central points (cp); and, in addition, a group of extreme levels
called axial points, given by 2k. The number of experiments
required is given by the sum: 28" *°P) 4 ¢p + 2k. In CCD
the axial points are within a distance « of the central points,
being o = 2k, Using as the decision variables feed
rate (mm/rev) and rotation (rpm) of the cutting tool, a full
factorial design 2* was performed, with 4 axial points and 5
center points, as suggested by [43], generating 13 experiments
(Table 1). The graphical representation is shown in Figure 2,
extracted from [32].

According to [32], in running a two-level factorial exper-
iment, it is usual to anticipate fitting the first-order model,
but it is important to be alert to the possibility that the
second-order model is really more appropriate. Because of
this, a method of replicating center points to the 2 design
will provide protection against curvature from second-order
effects and allow an independent estimate of error to be
obtained. Besides, one important reason for adding the
replicate runs at the design center is that center points do not
affect the usual effect estimates in a 2% design.

The decision variables were analyzed in a coded way in
order to reduce the variance. Only at the end of the analyses
were they converted to their uncoded values. The parameters
used in the experiments and their levels are shown in Table 2.

The analysis of experimental data shown in Table 1 gen-
erated the mathematical modeling presented in Table 3. An
excellent fit can be observed, once adjusted R” is greater than
90% for all responses.

Based on the data presented in Table 3, applying the
weighting method for multiobjective optimization proposed
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TaBLE 1: CCD for life of the cutting tool, productivity, and cost [8].
N Feed Rotation Life of cutting tool Productivity Cost
(mm/rev) (rpm) (mm) (part/h) (US$/part)
1 0.32 235 2,102 1,523 0.04686
2 0.38 235 2,853 1,712 0.03682
3 0.32 275 1,802 1,677 0.04474
4 0.38 275 1,501 1,847 0.04413
5 0.31 255 1,652 1,555 0.05019
6 0.39 255 1,802 1,813 0.04117
7 0.35 227 2,853 1,588 0.04047
8 0.35 283 1,952 1,807 0.03985
9 0.35 255 3,153 1,714 0.03562
10 0.35 255 3,003 1,713 0.03620
11 0.35 255 3,303 1,716 0.03509
12 0.35 255 2,703 1,709 0.03755
13 0.35 255 2,853 1,711 0.03684
TABLE 2: Parameters used in the experiments [8]. TABLE 4: Payoff matrix for the objective functions.
Levels Life of cutting tool Productivity Cost
Factors
—-1.41 -1 0 1 1.41 (mm) (part/h) (US$/part)
Feed (mm/rev) 0.31 0.32 0.35 0.38 0.39 3,140" 1,675 0.03612
Rotation (rpm) 227 235 255 275 283 1,524 1,850" 0.04298
3,067 1,718 0.03558"
*Optimum individual.
TaBLE 3: Mathematical models for the objective functions [8]. Once the objective functions have been defined, they are
aggregated into a formulation of multiobjective optimization,
Life of cutting tool Productivit Cost . .
Terms g Y by a weighted metric method; thus [12]
(mm) (part/h)  (US$/part)
m * 2
Constant 3,003 1,713 0.03626 Min T =Y u fix) - f(x)
_ - w; Max _ Min
Feed 83 90 0.00293 = fl fl
Rotation -366 75 0.00054 - 5 (5)
Feed » Feed 638 S5 0.00476 sti xxs<p
Rotation * Rotation -300 -8 0.00200 0w <1,
Feed * Rotation —-263 -5 0.00236 _
MSE 12.9 v:;hei‘e f(x) is ‘Lhebglobal olbjec(tlivedfurlllction, ]12; (x) izl tﬁe
ideal point or the best result individua ossible, and the
P value 0.003 0.000  0.000 vt v mdvicualy p )

, values f;"" and f; " are obtained in the payoff matrix. The
Regression (full 0.000 0.000 Lo Py, ) ) )
quadratic) 0.000 : : expression x x < p- describes the constraint to a region of
Lack of fit 0.926 0136 0.279 spherical solution, where p is the radius of the sphere. .

dusted B (% o1 10% 99.90% 94.30% Once Step 3 was implemented, an arrangement of mix-
Adjusted R” (%) i T ou tures for the weights of each objective function (Step 4) was
Normality of residuals 0.600 0511 0.552 defined. Due to the constraint Y, w; = 1, the use of the

in this paper was started. It is important to mention that
Tables 1 and 3 are equivalent to Steps 1 and 2, respectively,
as described in this work.

To implement the optimization routine described in
Step 3, the payoff matrix was estimated initially, obtaining the
results reported in Table 4.

mixtures arrangement is feasible.

Subsequently, the solution of the optimization problem of
Step 3 was obtained for each experimental condition defined
by the arrangement of mixtures (Step 5).

Based on these results, the GPE and the Entropy (Step 6)
were calculated and the results are shown in Table 5. The GPE
is calculated, as shown by [30], through expression

GPEzi

i=1

y;
Zi 1,
T, l ©




Mathematical Problems in Engineering 7
TABLE 5: Arrangement of mixtures and calculation of GPE and Entropy.

Weights Life of cutting tool Productivity Cost GPE Entropy
w, w, w;y
1 0 0 3,140 1,675 0.03612 0.10974 —-0.00002
0.75 0.25 0 2,825 1,762 0.03621 0.16567 0.56233
0.75 0 0.25 3,122 1,697 0.03572 0.09254 0.56233
0.5 0.5 0 2,619 1,784 0.03708 0.24373 0.69314
0.5 0.25 0.25 2,790 1,766 0.03634 0.17829 1.03972
0.5 0 0.5 3,115 1,700 0.03567 0.09139 0.69314
0.25 0.75 0 2,346 1,806 0.03840 0.35593 0.56233
0.25 0.5 0.25 2,578 1,788 0.03727 0.26009 1.03972
0.25 0.25 0.5 2,751 1,771 0.03650 0.19253 1.03972
0.25 0 0.75 3,108 1,704 0.03564 0.09089 0.56233
0 1 0 1,524 1,850 0.04298 0.72239 —-0.00002
0 0.75 0.25 2,312 1,809 0.03857 0.37034 0.56233
0 0.5 0.5 2,538 1,791 0.03745 0.27609 0.69314
0 0.25 0.75 2,711 1,775 0.03667 0.20782 0.56233
0 0 1 3,067 1,718 0.03558 0.09440 -0.00002
0.333 0.333 0.333 2,707 1,776 0.03669 0.20946 1.09861
0.667 0.167 0.167 2,876 1,755 0.03602 0.14787 0.86756
0.167 0.667 0.167 2,426 1,800 0.03800 0.32233 0.86756
0.167 0.167 0.667 2,801 1,765 0.03630 0.17413 0.86756

where y. is the value of the Pareto-optimal responses; T; is
the targets defined; m is the number of objectives.

In order to diversify the weights of multiobjective opti-
mization, Shannons Entropy Index [29] is calculated, using
the Pareto-optimal responses, through the expression:

S(x)=- iwi In (w;)
i=1 7)

st:0<w; <1,

Figure 3 shows the Pareto frontier obtained. It was observed
that life of cutting tool has negative correlation of —0.917,
significant at 1%, with the productivity parameter. This occurs
because, to obtain higher productivity, it is necessary to
increase the cutting speed in the process, exposing the tool
to increased wear. In a similar way, the life of the cutting tool
has a negative correlation of —0.968, significant at 1%, with
the cost per part. This occurs because the largest portion of
process cost is due to the cost of the cutting tool. In order to
maximize the life of cutting tool, the cost per part is reduced.
Interestingly, the productivity parameter and the cost per
piece have positive correlation of 0.787, significant at 1%. The
explanation for this behavior is also based on the fact that the
cutting tool is responsible for most of process cost. In order
to achieve greater productivity, it is necessary to increase the
cutting speed, compromising tool life. Thus, the increase in
productivity, in the analyzed case, is not enough to offset the
increased costs generated by the increased wear of the cutting
tool.

The weighted metric method [12] used in Step 5 was
unable to yield an even distribution of the Pareto-optimal

Cost (US$/part)

1750

: 1800 o
1850 ?rod“ct‘\vmf VILY

FIGURE 3: Pareto frontier obtained with the weighted metric
method.

points along the frontier. This drawback will be overcome
with the use of the NBI method [13].

From the calculation of the GPE and Entropy, the math-
ematical functions were modeled (Step 7):

GPE = 0, 108w, +0, 722w, + 0, 095w,
-0, 689w, w, — 0, 039w, w;
-0, 537w, w; + 0, 629w, w, (w; — w,)

-0, 826w, w; (w, — w;)



8
TABLE 6: Payoff matrix for the functions GPE and Entropy.
GPE Entropy
0.090" 0.643
0.213 1.112°
* Optimum individual.
+ 3, 696w, Wi w,
—~0,493w,w, (w, - w,)’
—0,338w,w; (w, - w,)°,
Entropy = -0, 002w, — 0, 002w, — 0, 002w,
+2, 748w, w, + 2, 748w, w;
+2, 748w, w; + 5, 355wfw2w3
+5, 355w, waw; + 5, 355w, w,ws
+1,224w,w, (w, - w,)’
+1,224w,w; (w; - w; )
+1, 224w,w, (w, — w3’
(8)

To implement the routine of multiobjective optimization
described in Step 8, the payoff matrix was estimated initially.
The results are shown in Table 6.

Based on the payoff matrix, it was possible to iteratively
implement (4), choosing w in the range [0;1]. Using this
equation, and the parameters from [13], 21 points were
achieved and the Pareto frontier was built for the GPE and
Entropy functions. Figure 4 shows the Pareto frontier, built
using the NBI methodology, for the GPE and Entropy func-
tions with the optimum point achieved with the weighting
methodology proposed being highlighted.

Lastly, Step9 was executed. To achieve the optimal
weights, the following routine was considered:

Ent
Max & = ——oBY
GPE
n
s.t.: Zwi =1 ©)
i=1
0<w, <L

By the maximization of &, described in (9), the optimal
weights w;, w,, and w; were found. The values are as follows:
w, (weight of life of cutting tool) = 0.48766; w, (weight of
productivity) = 0.03578; and w; (weight of cost) = 0.47656.
These optimal weights were used in a multiobjective
optimization of life of the cutting tool, productivity, and
cost, as (5), reaching the values of 3,001, 1,735, and 0.03566,
respectively. The optimal values of the decision variables are
as follows: feed rate = 0.37 mm/rev and rotation = 250 rpm.

Mathematical Problems in Engineering

0.22 {

0.20 A

0.18 A

0.16 A

GPE

0.14 4

0.12 4

0.10 4

0.6 0.7 0.8 0.9 1.0 1.1
Entropy

FIGURE 4: Pareto frontier by NBI method.

0.0360

Cost (US$/part)

e 1700
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FIGURE 5: Pareto frontier obtained with the proposal.

For each point in the Pareto frontier for the GPE and
Entropy functions, there is a set of values for the weights
w;, w,, and w;. In order to build a Pareto frontier these
weights were employed, using (5), to optimize the objective
functions “life of cutting tool,” “productivity,” and “cost.” The
results of the optimization process and the Pareto frontier
with the indication of the optimal are presented in Table 7 and
Figure 5.

The analysis of the data generated with NBI method
shows that the behavior of the correlations between the
results of the parameters life of cutting tool, cost per part, and
productivity was the same as that obtained previously when
the weighted metric method was used.

However, in Figure 5, it was found that the distribution
of Pareto-optimal points on the frontier is evenly distributed.
Using the NBI method for the selection criteria—Entropy
and GPE—it can reach the parameters for weights that
ensure an even distribution when it solves the original
multiobjective problem using the weighted metric method, as
in (5). Moreover, using as selection criteria Entropy and GPE,
in Figure 5 the best fitted point (the highlighted one in the
figure) can be found. With that proposal, the optimal point in



Mathematical Problems in Engineering 9
TABLE 7: Objective functions optimization results.
Weights Variable Objective functions

w, w, w;, Feed Rotation Life of tool Productivity Cost
0.33458 0.33359 0.33183 0.37 262 2707 1776 0.03669
0.34537 0.31468 0.33994 0.37 261 2721 1774 0.03663
0.35772 0.29556 0.34672 0.37 261 2736 1773 0.03656
0.37050 0.27585 0.35365 0.37 260 2752 1771 0.03650
0.38385 0.25544 0.36071 0.37 260 2768 1769 0.03643
0.39778 0.23417 0.36806 0.37 259 2786 1767 0.03636
0.41226 0.21194 0.37580 0.37 259 2804 1765 0.03629
0.42715 0.18876 0.38408 0.37 258 2824 1762 0.03621
0.44200 0.16488 0.39312 0.37 257 2846 1759 0.03613
0.45608 0.14091 0.40301 0.37 256 2869 1756 0.03605
0.46834 0.11778 0.41387 0.37 255 2892 1753 0.03597
0.47800 0.09641 0.42559 0.37 254 2915 1750 0.03589
0.48463 0.07729 0.43808 0.37 253 2938 1746 0.03582
0.48815 0.06050 0.45135 0.37 252 2961 1742 0.03576
0.48881 0.04583 0.46537 0.37 251 2983 1738 0.03570
0.48766 0.03578 0.47656 0.37 250 3001 1735 0.03566
0.48697 0.03297 0.48006 0.37 250 3007 1733 0.03565
0.48300 0.02166 0.49534 0.37 248 3033 1728 0.03561
0.47703 0.01166 0.51131 0.36 246 3064 1720 0.03559
0.47012 0.00274 0.52714 0.36 243 3103 1707 0.03563
0.39184 0.00000 0.60816 0.36 241 3112 1702 0.03566
0.33930 0.00000 0.66070 0.36 241 3111 1703 0.03565

Values in bold represent the optimal defined by the proposed optimization process.

the frontier that was, at the same time, the more diversified
one and the one with the lowest error when comparing the
ideal value for each objective function was discovered.

5. Conclusions

This work aimed to propose a method that can identify the
optimal weights involved in a multiobjective formulation, ina
nonsubjective manner. The lack of works that are proposed to
this end is evidence of this work’s relevance. The definition of
these weights is also important because this information can
be useful to the decision maker in decision making process.

Thus, this paper has presented a methodology for defin-
ing the optimal weights that, by using Design of Experiments
(DOE), has generated optimum values for the decision
variables that can be implemented in the vertical turning
process analyzed herein. This method presents itself as easy to
implement, without generating large computational demand
since the tools are available in popular software such as the
Solver function of Excel and Minitab.

The Entropy and the Global Percentage Error (GPE)
function, used as a criterion for evaluating Pareto-optimal
solutions, were identified as suitable indicators, enabling their
modeling via a polynomial of mixtures that delimited a
region of maximum diversification and minimum error for
the weight combination analyzed.

Another finding in this study was the possibility of
constructing, in an easy way, an evenly distributed Pareto
frontier for more than two objectives. With the present
proposal, the Entropy and the GPE can be calculated for
any number of objective functions and the Pareto frontier
and the optimal weights can be reached using the NBI
method as described. This is an advantage, mainly when the
computational economy is considered.

Thus, the main contributions of this study are the pro-
posal of a structured method, differentiated in relation to
the techniques found in the literature, of identifying optimal
weights for multiobjective problems and the possibility of
viewing the optimal result along the Pareto frontier of the
problem. This viewing possibility is very relevant information
for the more efficient management of processes. Moreover, it
can be stated that the proposed method promotes maximum
achievement among multiple objectives, that is, between a set
of Pareto-optimal solutions, being able to identify the best
optimal, based on the aforementioned selection criteria.

As a suggestion for future work, the application of
the presented methodology in other industrial processes is
proposed. Their application, a priori, is possible in various
contexts and with different numbers of objective functions.
Besides, the proposal is applicable to many studies using
stochastic programming where it is necessary to include,
at the same time, the mean and variance in the objective
function, as in the works developed by [33, 44].
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