
Acta Scientiarum  
http://www.uem.br/acta 
ISSN printed: 1806-2563 
ISSN on-line: 1807-8664 
Doi: 10.4025/actascitechnol.v38i4.29294 

 

Acta Scientiarum. Technology Maringá, v. 38, n. 4, p. 489-496, Oct.-Dec., 2016 

Comparisons of multivariate GR&R methods using bootstrap 
confidence interval  

Rogério Santana Peruchi1*, Hélio Maciel Junior2, Nilson José Fernandes1, Pedro Paulo 
Balestrassi2 and Anderson Paulo de Paiva2  
1Faculdade de Engenharia, Universidade Federal de Goiás, Avenida Doutor Lamartine Pinto de Avelar, 1120, 75704-020, Catalão, Goiás, Brazil. 
2Instituto de Engenharia e Gestão Industrial, Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil. *Author for correspondence.  
E-mail: rogerioperuchi@ufg.br 

ABSTRACT. This paper aimed to compare the performance of multivariate GR&R (gage repeatability 
and reproducibility) studies based on PCA (principal component analysis) and Manova (multivariate 
analysis of variance) methods. To estimate the multivariate gauge index, geometric and arithmetic means 
have been implemented with and without weighting strategies. Bootstrap confidence interval based on BCa 
(bias-corrected and accelerated) method has been adopted to determine multivariate gauge index adequacy. 
This confidence interval was calculated for the mean of univariate gauge indices estimated from each 
quality characteristic. The result analyses have shown that weighted approaches provided the best estimates 
of gauge index in multivariate GR&R studies. 
Keywords: measurement system analysis, repeatability and reproducibility, multivariate analysis of variance, principal 

component analysis. 

Comparações de métodos GR&R multivariados usando intervalo de confiança bootstrap 

RESUMO. Este artigo teve objetivo de comparar o desempenho de estudos GR&R (gage repeatability and 
reproducibility) multivariados baseados nos métodos PCA (principal component analysis) e Manova (multivariate 
analysis of variance). As médias aritmética e geométrica com e sem ponderação foram implementadas para 
estimar os índices de medição multivariados. Para determinar a adequação dos índices de medição 
multivariados, foi adotado o intervalo de confiança bootstrap BCa (bias-corrected and accelerated). Esse 
intervalo de confiança foi calculado para a média dos índices de medição univariados estimados de cada 
característica da qualidade. As análises dos resultados mostraram que as abordagens ponderadas 
apresentaram melhores estimativas dos índices de avaliação em estudos GR&R com múltiplas variáveis.  
Palavras-chave: análise de sistemas de medição, repetitividade e reprodutividade, análise multivariada de variância, 

análise de componentes principais. 

Introduction 

In any measurement process, at least part of the 
variation is due to the measurement system. It is 
unlikely that repeated measurements of any 
measurand results in exactly the same value (Senol, 
2004; Majeske, 2008; Woodal & Borror, 2008; 
Automotive Industry Action Group [AIAG], 2010; 
Al-Refaie & Bata, 2010; Wang & Chien, 2010; 
Peruchi, Balestrassi, Paiva, Ferreira, & Carmelossi, 
2013). Measurement system analysis (MSA) is a set 
of statistical techniques for ensuring that the 
measurement system variability is not significant in 
relation to manufacturing process variation. GR&R 
(gage repeatability and reproducibility) is the most 
common study in MSA to assess the precision of 
measurement systems (Peruchi, Paiva, Balestrassi, 
Ferreira, & Sawhney, 2014; Pereira, Peruchi, Paiva, 
Costa, & Ferreira, 2016). Repeatability is the 

variation of the measuring instrument or equipment 
assessing the same unit (operator or with the same 
setup and the same period of time). Reproducibility 
determines the variability arising from different 
operators, set-ups or period of time (Burdick, 
Borror, & Montgomery, 2003; Polini & Turchetta, 
2004; Awad, Erdmann, Shanshal, & Barth, 2009; 
Wu, Pearn, & Kotz, 2009; Erdmann, Does, & 
Bisgaard 2009; Kaija et al., 2010; Weaver, Hamada, 
Vardeman, & Wilson, 2012; Peruchi et al., 2013). A 
measurement system is deemed adequate for 
monitoring a particular application, if R&R variation 
is relatively smaller than manufacturing process 
variation (Majeske, 2012; Pereira et al., 2016). 

In GR&R studies two methods are usually 
utilized: (i) analysis of variance (ANOVA); and  
(ii) the X  and R chart (Burdick et al., 2003; Wang & 
Chien, 2010). ANOVA is preferred due to its 
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capacity of estimating the component of 
reproducibility from interaction between parts and 
operators. These methods are commonly applied to 
univariate cases; however, analysts often use more 
than one characteristic of the product to 
discriminate among different units (Burdick, 
Borror, & Montgomery, 2005). The analyst must 
consider the correlation structure among the 
characteristics to properly estimate the evaluation 
indices in these multivariate GR&R studies.  

It is never possible to predict the exact values of 
variance components due to manufacturing and 
measurement variation in GR&R studies. 
Confidence intervals are used to quantify the 
uncertainty associated with the point estimation for 
each gauge variance component (Burdick  
et al., 2005). Wang and Li (2003) used Bootstrap 
method to obtain the confidence intervals of gauge 
variability when the control chart is used to find the 
point estimates. Wang and Chern (2012) evaluated 
the accuracy of the confidence interval for the circle-
diameter with circular tolerances by using the 
Bootstrap method. In this particular research, the 
Bootstrap method has been applied upon univariate 
gauge capability indices in order to build confidence 
intervals. These confidence intervals were used as 
comparison criterion for evaluating performance of 
multivariate GR&R methods.  

This article deals with repeatability and 
reproducibility studies applied to multivariate 
processes. Principal component analysis (PCA) and 
multivariate analysis of variance (Manova) are the 
most common multivariate methods used in such 
complex systems (Wang, 2013). The aim of this 
paper is to compare PCA and Manova methods with 
their variations to determine directions for 
practitioner conducting multivariate GR&R studies. 
The comparison criterion adopted in this research 
was the confidence intervals for the mean by BCa 
(bias-corrected and accelerated) bootstrap procedure 
of univariate evaluation indices of the measurement 
system. The results have shown that weighted 
approaches were the most effective strategies to 
calculate the evaluation index in multivariate GR&R 
studies.  

Material and methods 

In order to achieve the objective of this research, 
this section presents an overview of multivariate 
GR&R methods (Manova and PCA) and the 
bootstrap procedure to calculate the confidence 
interval. This was the criterion used to evaluate the 
performance of the multivariate evaluation indices 

of the measurement system. In the next section, 
three illustrative examples were assessed and some 
concerns about multivariate index estimates were 
provided. Last section addressed the main findings 
of this research. 

GR&R based on multivariate analysis of variance 

For GR&R studies considering two factors with 
interaction for q multiple quality characteristics, the 
model is given by Equation 1 (Majeske, 2008; 
Peruchi et al., 2014): 
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where: 
Y = (Y1, Y2, …, Yq) and μ = (μ1, μ2, …, μq) are 
constant vectors;  
αi~N (0, Σα), βj~N (0, Σβ), αβij~N (0, Σαβ), and 
εijk~N (0, Σε) are random vectors statistically 
independent of each other. Variance components in 
Equation 1 can be estimated using the Manova 
method proposed by Majeske (2008). These 
variance components are estimated for obtaining an 
index that evaluates acceptance of the measurement 
system, called %R&Rm (variation percentage due to 
repeatability and reproducibility). The index 
%R&Rm, or G index for this Manova method, can be 
calculated by Equation 2: 
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where: 
λms and λt are eigenvalues extracted from the 
variance-covariance matrices for measurement 
system (

msΣ̂ ) and total variation (
tΣ̂ ), respectively. 

%R&Rm less than 10% requires that the 
measurement system is deemed acceptable. If the 
index lies in a marginal region between 10 and 30%, 
the measurement system may be acceptable 
depending on the application, the measuring device 
cost, repair cost, or other factors. Moreover, the 
measurement system is considered unacceptable if 
the index exceeds 30% (Li & Al-Refaie, 2008; 
Woodall & Borror, 2008; AIAG, 2010). 

To estimate the evaluation index of the 
measurement system, Equation 2 applies geometric 
mean on 

tms λλ ratio. This strategy does not 
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determine the utmost importance for the most 
significant pairs of eigenvalues extracted from the 
variance-covariance matrices. Thus, Peruchi, Paiva, 
Balestrassi, Ferreira, and Sawhney (2014) adopted a 
weighted approach on 

tms λλ  to propose four 
new evaluation indices for multivariate 
measurement systems (%R&Rm). The new indices 
WAt, WAms, WGt and WGms can be estimated using 
Equations 3 and 4. 
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where: 

qiWi ,...,1=∀  determines the explanation percentage 

of the eigenvalues extracted from either 
( ) =

= q

j ttit ji
W

1
:ˆ λλΣ  or ( ) =

= q

j msmsims ji
W

1
:ˆ λλΣ . 

The WAt and WAms indices are calculated by the 
weighted arithmetic mean in Equation 3. On the 
other hand, the WGt and WGms indices are estimated 
using weighted geometric mean according to 
Equation 4. 

GR&R based on principal component analysis 

According to Wang and Chien (2010) and 
Peruchi, Balestrassi, Paiva, Ferreira, and Carmelossi 
(2013), to deal with q multiple quality characteristics 
in GR&R studies, PCA is an alternative method to 
Manova. The model that represents a multivariate 
GR&R study using PCA is given by Equation 5: 
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where: 
PCn are scores of principal components PC1, PC2, 
..., PCq;  
μ is a constant;  
αi, βj, αβij and εijk are independent normal random 
variables with zero means and variances σα2, σβ2, σαβ2 
and σε2 respectively. The %R&Rm evaluation index of 
the measurement system is obtained by Equation 6 
through the PCA method. More details on how to 
obtain the scores of principal components and how 
to evaluate the measurement system using the PCA 
method, see Wang (2013) and Wang and Chien 

(2010). The measurement system acceptance criteria 
are the same as described in the previous subsection. 
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Wang and Chien (2010) compared the PCA 
method with two other methods for analyzing the 
measurement system. However, these authors 
performed individual analysis for each principal 
component. This methodology may not be 
appropriate since the individual analysis might 
provide different interpretations. When responses 
are highly correlated (e.g., %PC1 > 95%), the first 
principal component explains reasonably well 
measurement system’s variability. However, when 
the correlations between the responses are medium 
or low, additional principal components must be 
assessed, since the first principal component is 
incapable of explaining the entire variation of the 
original responses. Consequently, Peruchi  
et al. (2013) proposed a method for multivariate 
GR&R studies using weighted principal components 
(WPC). In this case, the model in Equation 5 is 
modified by weighting the scores of principal 
components based on their respective eigenvalues. 
The response vector to be analyzed in Equation 5 
should be Equation 7: 
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or using the explanation percentage of each principal 
component as such, according Equation 8: 
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The measurement system evaluation index using 

WPC method follows Equation 6, however, all 
computations are based on weighted scores of 
principal components.  

Comparison criterion based on Bootstrap confidence 
interval 

Bootstrap is a computational method for 
assigning accuracy measures of statistical estimates 
(Efron & Tibshirani, 1993). Confidence intervals is 
one of the areas that the bootstrap procedure has 
achieved greater success (Wehrens, Putter, & 
Buydens, 2000). According to Wang and Chern 
(2012), the standard method assumes μY(i) and SY(i) be 
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Wang and Chern (2012) and Efron and Tibshirani 
(1993). After that, the bootstrap confidence interval 
[10.86 and 20.42%] based on BCa method was built 
using Equations 12 at 14. These BCa confidence 
intervals have been estimated by using Matlab® 
software. Eventually, variance-covariance matrices 
(Manova method) and standard deviation based on 
scores of principal components (PCA method) for 
manufacturing process (part-to-part), measurement 
system, and total variation were estimated and stored 
in Table 2. 

Table 1. Variation components, univariate gauge indices and 
bootstrap confidence interval for case 1. 

Source Y1 Y2 Y3 Y4 BLCL BUCL
Part-to-part 0.018 0.252 0.208 0.986   
Measurement System 0.001 0.006 0.005 0.008   
Total Variation 0.019 0.258 0.213 0.995   
%R&R 22.20 15.66 15.09 9.26 10.86 20.42 
 

%R&Rm indices based on Manova were 
calculated by extracting eigenvalues from variance-
covariance matrices, in Table 2, using  
Equatons 2 at 4. %R&Rm indices using PCA method 
were obtained by standard deviation related to either 
scores or weighted scores of principal components, 
according to Equation 6. Additionally, Figure 1 
illustrates the multivariate evaluation indices and the 
BCa confidence intervals estimated from case 1. The 
multivariate indices calculated by Manova presented 
estimates within the bootstrap confidence interval 
[10.86; 20.42], using both simple geometric mean 
(G index) and weighted approaches for arithmetic 
and geometric means (WAt, WGt, WAms and WGms 
indices). Through the PCA method, the principal 
components PC1, PC2 and PC3 together account for 

99% explanation of the original variables. PC1 and 
PC2 estimated within the BCI, but PC3  
(%R&Rm = 9.6%) was estimated outside BCI. Wang 
and Chien (2010) recommended evaluating 
components representing at least 95% of 
explanation, so this approach was deemed failed. 
Through the weighted arithmetic mean of the 
principal component scores, WPC adequately 
estimated the multivariate index of the measurement 
system. 

 

 
Figure 1. Multivariate gauge indices and bootstrap confidence 
intervals for cases 1 and 2; Source: the authors. 

Table 2. Variation components and multivariate gauge indices for case 1. 
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Case 2: turning process measurement system 

A recent study by Peruchi et al. (2014) analyzed 
roughness measurements of work pieces made up of 
AISI 12L14 steel from a turning process. Five 
roughness parameters were evaluated in a 
multivariate GR&R study with p = 12 parts, o = 3 
operators and r = 4 replicates. Similarly to the case 
1, variance components for manufacturing process 
(part-to-part), measurement system, total variation, 
and the univariate index %R&R were estimated and 
presented in Table 3. 

Table 3. Variation components, univariate gauge indices and 
bootstrap confidence interval for case 2. 

Source Ra Ry Rz Rq Rt BLCL BUCL
Part-to-part 0.444 1.564 1.383 0.456 1.696   
Measurement system 0.082 0.646 0.428 0.111 0.643   
Total Variation 0.452 1.693 1.448 0.470 1.813   
%R&R 18.22 38.18 29.52 23.66 35.47 22.66 35.36 
 

The first two steps of the proposed procedure of 
bootstrap confidence intervals have already been 
conducted, as seen in Table 3. Then, 2000 bootstrap 
samples were generated from the %R&R indices. 
After that, the bootstrap confidence interval  
[22.66 and 35.36%] based on BCa method was built 
using Equations 12 at 14. Finally, variance-
covariance matrices and standard deviation based on 
scores of principal components for manufacturing 
process (part-to-part), measurement system, and 
total variation were estimated and stored in Table 4.  

Table 4. Variation components and multivariate gauge indices 
for case 2. 

Source 
Manova PCA 

G WAt WGt WAms WGms PC1 PC2 WPC
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958.0
959.0

059.1
754.0

647.0
063.1

959.0108.1972.0883.0
754.0972.0069.1668.0
063.1883.0668.0080.1

 
2.137 0.863 9.080

%R&Rm 44.64 29.30a 29.12a 30.92a 30.23a 28.97b 30.31b 30.21b

aevaluation index within the confidence interval based on Manova; bevaluation index 
within the confidence interval based on PCA.  

%R&Rm indices based on Manova were 
calculated by extracting eigenvalues from variance-
covariance matrices, in Table 4, using Equations 2 at 

4. %R&Rm indices using PCA method were obtained 
by standard deviation related to either scores or 
weighted scores of principal components, according 
to Equation 6. Figure 1 also shows the multivariate 
evaluation indices and the BCa confidence intervals 
estimated from case 2. Based on Manova method, 
the result using G index (%R&Rm = 44.64%) 
showed that simple geometric mean was unable to 
estimate the multivariate index within the bootstrap 
confidence interval [22.66 and 35.36%]. 
Nevertheless, the weighted approaches (WAt, WGt, 
WAms and WGms indices) presented satisfactory 
results to classify the measurement system. Using 
PCA method, similar performance was observed for 
estimating the multivariate evaluation indices. PC1 
and PC2 represented 98.6% explanation of the 
original variables and estimated the multivariate 
index within the confidence interval. As seen in 
Table 4, WPC index has also been effective 
classifying the measurement system. 

Case 3: simulated data analysis 

Peruchi et al. (2013) presented a simulation 
study for multivariate GR&R using the same setup 
in Majeske (2008). The authors simulated 15 
scenarios considering several correlation structures 
for Ys and different types of measurement systems. 
Assessing this dataset using ANOVA method, 
univariate indices were estimated to four quality 
characteristics at each scenario. Table 5 shows the 
%R&R indices and the bootstrap confidence interval 
obtained by the proposed procedure.  

Table 5. Simulation study scenarios, univariate gauge indices and 
bootstrap confidence interval for the case 3. 

Scenario Univariate (%R&R) BCI 
S MS Corr. Y1 Y2 Y3 Y4 BLCL BUCL 
S1 UN VL 49.9 39.3 38.3 34.1 36.20 47.25 
S2 UN L 42.2 55.5 44.3 39.8 41.00 52.70 
S3 UN M 40.8 52.4 42.6 36.9 38.85 49.95 
S4 UN H 45.3 33.2 41.2 47.8 35.20 46.15 
S5 UN VH 31.1 34.9 37.8 41.1 32.78 39.55 
S6 MA VL 15.8 14.1 13.7 10.2 11.08 14.95 
S7 MA L 18.6 27.2 21.3 24.1 19.95 25.72 
S8 MA M 15.5 23.7 17.0 14.6 15.20 22.02 
S9 MA H 13.2 10.3 13.6 16.9 11.12 16.08 
S10 MA VH 15.2 19.0 19.7 20.9 16.15 20.42 
S11 AC VL 8.4 6.3 4.9 5.3 5.25 7.88 
S12 AC L 5.6 4.6 6.7 5.4 4.85 6.38 
S13 AC M 6.2 9.6 6.6 5.9 6.08 8.85 
S14 AC H 5.7 4.5 5.9 7.3 4.85 6.95 
S15 AC VH 6.5 7.6 8.6 9.2 6.78 8.90 
 

Using Equations 2 at 4 and 6, multivariate gauge 
indices were also estimated for each scenario.  
Table 6 presents these indices obtained by Manova 
and PCA methods. 
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Table 6. Comparison of gauge indices for multivariate 
measurement system in case 3. 

Scenarios Manova PCA 
S G WAt WGt WAms WGms PC1 PC2 PC3 WPC
S1 10.78 31.62 18.28 48.84 48.51 52.24 19.55 15.32 39.71b

S2 13.30 36.50 30.28 45.42a 44.94a 53.84 10.48 20.91 52.84
S3 11.32 38.27 31.45 45.76a 45.51a 47.79b 11.21 17.65 47.87b

S4 28.15 42.95a 42.20a 44.33a 44.14a 44.38b 8.94  44.03b

S5 64.09 35.81a 35.79a 36.05a 35.94a 36.10b   36.11b

S6 4.97 9.62 6.48 15.67 15.38 18.46 6.92 2.79 12.65b

S7 10.04 19.86 14.68 27.15 26.87 24.97b 2.77 8.37 26.98
S8 5.40 15.38a 13.24 18.02a 17.90a 19.71b 6.01 11.78 19.86b

S9 14.31a 14.37a 14.35a 14.44a 14.43a 14.17b 6.01  14.00b

S10 47.23 16.95a 16.94a 17.33a 17.12a 18.63b   18.63b

S11 4.08 5.00 4.41 6.75a 6.49a 6.41b 6.39b 4.59 4.10 
S12 2.01 4.70 3.53 6.18a 6.13a 6.69 1.15 2.25 6.89 
S13 2.28 6.07 5.32 7.05a 7.00a 7.87b 1.95 5.75 8.04b

S14 7.22 6.58a 6.56a 6.65a 6.63a 5.99b 3.34  5.91b

S15 39.35 7.78a 7.78a 8.18a 7.89a 7.92b   7.92b

aevaluation index within the confidence interval based on Manova; bevaluation index 
within the confidence interval based on PCA.  

Figure 2 presents the multivariate evaluation 
indices and BCa confidence intervals of simulated 
scenarios with unacceptable measurement systems. 
Indices obtained by both Manova with simple 
geometric mean (G index) and PCA with individual 
analysis of principal components (PC1, PC2 and/or 
PC3 indices) have represented the worst estimates. 
Effectiveness was observed only in one (S9) and 
three (S5, S10 and S15) scenarios, respectively. 
Weighted Manova using eigenvalues extracted from 
total variation matrix determined moderate 
effectiveness. WAt and WGt estimated the 
multivariate evaluation index within BCI in seven 
(S4, S5, S8, S9, S10, S14 and S15) and six (S4, S5, 
S9, S10, S14 and S15) scenarios, respectively.  

 

 
Figure 2. Multivariate gauge indices and bootstrap confidence 
intervals for S1-S5 scenarios; Source: the author.   

In this simulation study, the most effective 
approaches, in estimating the evaluation index of the 
measurement system, were weighted Manova based 
on eigenvalues extracted from measurement system 
matrix (WAms and WGms indices) and weighted 
principal components (WPC). According to 95% 
bootstrap confidence interval, WAms, WGms and 
WPC have failed only on three (S1, S6 and S7), 
three (S1, S6 and S7) and four (S2, S7, S11 and S12) 
scenarios, respectively. 

Results and discussion 

Taking into account the aforementioned results, 
Table 7 summarizes the performance of multivariate 
methods for distinct types of measurement systems 
and several correlation structures among quality 
characteristics. Comparing the multivariate indices 
to the bootstrap confidence interval, weighted 
approaches based on WAms, WGms and WPC have 
presented the best performances. WAms and WGms 
weight the 

tms λλ  ratio with the explanation 

percentage of the eigenvalues extracted from 
measurement system matrix (

msΣ̂ ), using  

Equations 3 and 4. As seen in Table 7, this strategy 
showed better estimates than G, WAt and WGt 
indices. Accordingly, WPC weights each principal 
component with their respective eigenvalues using 
Equation 7. Table 7 determines that evaluating each 
principal component individually is inadequate.  

Table 7. Overview of multivariate analyses of measurement 
systems. 

Cases 1, 2 and 3 Manova PCA 
MS Corr. Evidence G WAt WGt WAms WGms PCi WPC

UN 

VL S1      

L S2        
M S3      

H  S4 and Case 2      

VH S5      

MA 

VL  S6 and Case 1      

L S7       
M S8      
H  S9 and Case 2      

VH S10      

AC 

VL S11       
L S12       
M S13      
H S14      

VH S15      

 

Nevertheless, it is essential to highlight that low 
or very low correlation structures among 
characteristics deserve special attention. In such 
multivariate scenario, even weighted approaches had 
presented poor performance. Therefore, 
practitioners should estimate the multivariate index 
carefully by using both Manova and PCA methods 
in order to ensure that the measurement system was 
properly classified. Furthermore, additional indices 
such as ‘ndc’ (number of distinct categories) and 
%P/T (percentage of precision-to-tolerance) may be 
calculated with the aim of determining properly the 
contribution of variation due to repeatability and 
reproducibility. 

Conclusion 

This article has investigated the multivariate 
analysis of measurement systems through 
repeatability and reproducibility  studies.  The  main  
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contribution of this research was to develop an 
extensive comparison of multivariate GR&R studies 
using Manova and PCA methods. Differently from 
previous works (Peruchi et al., 2013; 2014), better 
estimates for confidence intervals were provided by 
bias-corrected and accelerated bootstrap procedure 
(BCa). The result analyses have shown that weighted 
approaches were the most effective strategies for 
estimating the evaluation index in multivariate 
measurement systems. As seen in Table 7, 
multivariate gauge indices using WAms, WGms and 
WPC obtained success in 13, 13 and 12 scenarios, 
respectively. Even though in few scenarios these 
strategies have failed, the estimates were quite close 
to the bootstrap confidence limits. Further study can 
be extended to other multivariate indices such as 
‘ndc’ and %P/T. Moreover, expanded GR&R and 
nested GR&R applied to multivariate processes 
deserve special attention in future researches.  
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