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a b s t r a c t

This paper presents the multiobjective optimization of methyl orange treatment with ozone using
Normal Boundary Intersection and response surface models of rotated principal component factor scores
for the expected value E[f(x)] and prediction variance Var[f(x)] of dye removal (Y1) and chemical oxygen
demand removal (Y2). The innovation and the main contribution of this paper consists of building a 2-
dimensional equispaced and convex Pareto Frontier for rotated factor scores representing the original
multivariate set, reducing the number of objective functions without inverting the correlation among the
original responses. Furthermore, this proposal provides a practical way to generate the narrowest
possible prediction confidence intervals for a desired optima using the fuzzy membership function
criterion in order to select the best compromise solution between E[f(x)] and Var[f(x)]. To illustrate the
proposal's feasibility, a central composite design for the ozonation process of methyl orange solution
with three factors (x1 ¼ pH, x2 ¼ air flow and x3 ¼ ozone dosage) was run. The optimization results
showed a maximum dye removal of 94.1% ± 4.3 with a respective chemical oxygen demand removal of
88.4% ± 5.3 obtained at x* ¼ [9.5; 7.1 l.min-1; 18.4 g h�1]. However, this point have presented the largest
95% prediction confidence interval. Based on the fuzzy membership of Pareto set it was possible to select
the narrowest 95% confidence intervals with maximum removal rates (Y1 ¼ 90.5 ± 2.2 and
Y2 ¼ 88.3 ± 2.7), obtained at x* ¼ [7.9, 5.6 l min�1, 18.4 g h�1]. Confirmation runs and comparisons among
several optimization methods were done and indicated that the results fell within the respective con-
fidence intervals for predictions, which corroborates the good adequacy of the proposal.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Response surfacemethodology (RSM) has been extensively used
in the modelling and optimization of industrial an urban waste-
water treatments. Examples include the wastewater treatment of
livestock (Tak et al., 2015), meat industry (Thirugnanasambandham
et al., 2015), tobacco wastewater (Pi et al., 2015), leather industry
(Boopathy and Sekaran, 2013), textile industry (Sheydaei et al.,
2014), steel industry (Anouzla et al., 2009), petroleum refinery
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design (BBD) (Nair and Ahammed, 2015). Both designs are capable
of generate nonlinear objective functions like full quadratic models
(Montgomery, 2009). The central composite design (CCD) is a
response surface array composed by three groups of points: a
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controllable factors), 2k axial points and n center points. The
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distance between center and axial points are generally defined as
2(k/4). Sometimes, the axial points produce a set of unfeasible ex-
periments, since they represent extreme high or low conditions for
the controllable factors (Myers and Montgomery, 2009). Then, if
the chosen levels for the controllable factors lead to impracticable
experiments, Box-Behnken design is more recommended since it is
a design formed by combinations of factorial and center points
without outside or extreme points. These designs have been used to
build objective functions related to several characteristics of
wastewater treatments like color removal (Tak et al., 2015),
chemical oxygen demand (COD) (Nair and Ahammed, 2015), dye
removal from aqueous solutions (Asfaram et al., 2015a), biological
oxygen demand (BOD) (Lu et al., 2013), total organic carbon (TOC)
(Arslan-Alaton et al., 2009), turbidity (Nair and Ahammed, 2015)
and decolorization efficiency (DEC) (Sheydaei et al., 2014) among
others. According to the objective of treatment these responses
must be maximized, like in case of DEC or color removal or mini-
mized, like in the case of COD. COD is one of the most important
characteristics in wastewater treatments like is in the tanning
process of leather industry (Dixit et al., 2015) which involves azo
dyes (Orange II) and textile wastewater treatment based on
advanced oxidation process (Asghar et al., 2015).

Box-Behnken Design (BBD) has been applied in several works.
�Sere�s et al. (2016), for example, applied BBD in the treatment of
vegetable oil refinery wastewater using alumina ceramic mem-
brane. In it, two concave objective functions for the microfiltration
process, permeate flux and COD, were fitted. Although the sta-
tionary points were not the same, no optimization routine was
employed in this case. Other examples include the use of BBD in the
biosorptive decolorization process by a green type sorbent (Akar
et al., 2016), the ammonium nitrogen (NH4eN) removal from
ammoniacal waste (Kumar and Pal, 2013), a Polyaluminium
chloride-based water treatment sludge (Nair and Ahammed, 2015),
a livestock wastewater treatment based on electrocoagulation
process (Tak et al., 2015), a meat industry wastewater by electro-
chemical treatment (Thirugnanasambandham et al., 2015) and in
the Ca/MG/Al coagulation process of tobacco wastewater (Pi et al.,
2015).

CCD has beenwider used in thewastewater treatment. Sheydaei
et al. (2014), for example, optimized a photo-Fenton decolorization
process of Orange 29 applied to textile wastewater using CCD; Li
et al. (2015) studied the photo-Fenton decolorization of Orange II.
Lu et al. (2011) used this design for Photo-Fenton pretreatment of
carbofuran; Wang et al. (2014), used it in the coagulation-
flocculation process of tobacco slice wastewater; Studies of
Asfaram et al. (2015a, 2015b, 2015c), Asfaram et al. (2015d),
Dastkhoon et al. (2015), Bagheri et al. (2016), Dil et al. (2016,
2017), Asfaram et al. (2016, 2017) used CCD for optimize the
removal of dyes by adsorption processes. Torrades and Garcia
Montano (2014) employed CCD in the Fenton and photo-Fenton
degradation of real dye wastewater; Saeed et al. (2014) studied
the palm oil mil effluent wastewater treatment by fenton using
CCD; the same design was employed by Boopathy and Sekaran
(2013) in the leather industry wastewater treated by electro-
chemical process. A face centered CCD was used by Muhamad et al.
(2013) for optimization of COD, NH3eN and 2.4-DCP removal from
recycled paper wastewater. It can also be cited the use of CCD in a
petroleum refinery wastewater treatment by photocatalytic
oxidation and mineralization using TiO2 nanoparticles (Shahrezaei
et al., 2012), coagulation of highly concentrated industrial grade
leather dye (Khayet et al., 2011), the electrochemical treatment of
dairy industry wastewater using iron electrodes (Kushwaha et al.,
2010), Fenton oxidation pretreatment of wastewater sludge
(Pham et al., 2010), advanced oxidation process of Terasil Red R dye
using H2O2/pyridine/Cu(II) (Lim et al., 2009), disperse azo dyes by
coagulation-flocculation in the steel industrial wastewater treat-
ment (Anouzla et al., 2009), photo-fentom-like advanced oxidation
process of azo dye production wastewaters (Arslan-Alaton et al.,
2009) and the advanced oxidation process by Fenton's peroxida-
tion of olive oil mil wastewater (Ahmadi et al., 2005).

Second order surface models are generally used to build
objective functions of explain the relationship between input (x)
and output (y) variables. After modelling, objective functions may
be used to optimize the dependent variable (y). The simplest way to
optimize a process is to find the stationary point of the objective
function, taking its first partial derivative. Depending on the con-
vexity of the second order surface model, the stationary point will
be a minimum, maximum or saddle point. For example, in Pi et al.
(2015) the response surfacemodel for DEC is concave and therefore,
the stationary point is a maximum. The same result may be seen in
the paper of Li et al. (2015), with a saddle point for DEC in the
photo-fenton decolorization of Orange II. Sheydaei et al. (2014) also
modelled DEC in textile wastewater and obtained a surface model
that is neither convex nor concave. The same kind of surfacemodels
are observed in the adsorption ultrasound-assisted simultaneous
removal of Pb2þ ion and malachite green (MG) dyes in the work of
Dil et al. (2017). In such cases, the stationary point is a saddle point.

The convexity of any function may be determined assessing the
eigenvalues of hessian matrix (a second partial derivatives of the
objective function). If the eigenvalues of the hessian are all positive
then the function is convex and the stationary point is a minimum.
If the eigenvalues are all negatives, function is concave and the
stationary point is a maximum. If the eigenvalues are simulta-
neously positives and negatives then the function is neither convex
nor concave and the stationary point is a saddle point (Rao, 2009). It
is worth mentioning that the reduced models produced when the
no significative terms are removed will imply in response surface
that will be neither convex nor concave, which is very common in
thewastewater treatment. Examples of suchmodels may be seen in
several works like Dastkhoon et al. (2015), Asfaram et al. (2015a).

If a convex objective function needs to be maximized, it will be
necessary to add a constraint to close the solution region. In this
case, the solution will fall far from the center point and the pre-
diction variance will be the largest. Therefore, when the convexity
of objective functions is not compatible with the optimization di-
rection, it will be necessary to use a constraint function like
gðxÞ ¼ xTx � r2, which represents a hypersphere outlined by the
CCD design (Myers and Montgomery, 2009). According to the
classical theory of DOE (Design of Experiments), the variance of
prediction is a minimum in the vicinity of center points (design
center) and increases in the direction of axial point (extreme points
in CCD designs) (Myers and Montgomery, 2009). Therefore, every
time the convexity of response surface is contrary to the optimi-
zation direction, the solution of the optimization problemwill be an
external point with poor predictability. This means that the (1-a)%
confidence interval for the optimumwill be as large as possible, and
the predicted value for the optimization will be unreliable. The
problem increases if more than one response is considered for
optimization.

If the stationary point is a saddle point, the aforementioned
constraint will be always required since the response surfaces will
be neither convex nor concave. Saddle points have been extensively
observed in the literature, like the response surface for COD of a
photocatalytic oxidation of petroleum refinery wastewater
(Shahrezaei et al., 2012), COD of dairy industry wastewater
(Kushwaha et al., 2010), COD in the textile wastewater treatment by
iron electrode (Lim et al., 2009) and the response surface for dye
removal in the leather industry wastewater (Khayet et al., 2011).
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Therefore, every time the optimization direction is not compatible
with the nature of stationary point, graphical solutions like contour
plots will not be useful. Even if the researcher consider the use of
contour plots for optimization task, the solution tends to fall far
from the center points, within of infeasible regions and with the
worst possible predictability.

Besides de convexity dilemma, many works surveyed in this
research have presented the use of RSM formore than one objective
function which is a very common practice in engineering. Dil et al.
(2017) employed CCD to the simultaneous modelling of Pb2þ ion
and malachite green (MG) dyes removal rate by adsorption. Nair
and Ahammed (2015), for example, use BBD to fit objective func-
tions for COD and turbidity. Both functions are neither convex nor
concave and presented a Pearson's correlation between themodel's
coefficients about r ¼ 0.997. A high level Pearson's correlation co-
efficient is also found between COD (neither convex nor concave)
and color removal (concave) (r ¼ 0.998); the same convexity and
correlation may be verified in the work of Thirugnanasambandham
et al. (2015). Lu et al. (2013) presented the response surfaces of
Carbofuran removal and BOD/DOC (concave) beside DOC removal
(neither convex nor concave). These three characteristics are also
correlated. Correlated response surfaces for COD (neither convex
nor concave) and color removal (concave) are also found in Wang
et al. (2014). Torrades and García-Monta~no (2014) report two
concave response surfaces for COD Fenton and Photo-fenton. In the
work of Saeed et al. (2014) COD (convex) and color removal (neither
convex nor concave) are also positively correlated and both func-
tion must be maximized. Boopathy and Sekaran (2013) presented
convex response surfaces for COD and TKN in a leather industry
wastewater. Solubilization (concave) and biodegradability (convex)
are two correlated functions found in Pham et al. (2010). Arslan-
Alaton et al. (2009) presented response surfaces for COD, TOC
and color removal, all of them are neither convex nor concave.
Ahmadi et al. (2005) built four correlated response surfaces (all of
them neither concave nor convex) for COD, total polyphenols, color
removal and aromaticity.

The COD reduction capacity in water is a broadly used param-
eter for checking the efficiency of purification treatment systems
(Oguz and Keskinler, 2008). Thus many researchers have used this
parameter to check the degradation of organic compounds (Zhang
et al., 2007). The dye degradation has been widely studied due to
high turbidity and dissolved oxygen consumption caused in
receiving bodies when discarded improperly. Therefore many re-
searchers have made efforts to determine the best conditions of
degradation of these compounds in treatment plants. Ge et al.
(2016) assessed the degradation of methyl orange by ozone in the
presence of ferrous and persulfate ions in a rotating packed bed.
Zhu et al. (2015) applied a quantitative structure-activity or prop-
erty relationships (QSAR) models for degradation of organic pol-
lutants in ozonation process under acidic condition. Jin et al. (2014)
presented an alternative optimization of the decolorization of
Methylene Blue and Methyl Orange dye by pulsed discharged
plasma in water using response surface methodology. Li et al.
(2014) promoted the degradation of methyl orange by sodium
persulfate activated with zero-valent zinc. Liu et al. (2014) studied
the degradation of basic and acid dyes in high-voltage pulsed
discharge. Li et al. (2015) analyzed the degradation effects of UV, O3
and UV/O3 in the degradation of methyl orange. Mohajerani et al.
(2011) employed nonlinear least-square regression to analyze the
combined effect of ozonation and ultrasonolysis processes to pre-
dict the azo dye degradation. Zhang et al. (2010) analyzed the
methyl orange degradation by pulsed discharge in the presence of
activated carbon fibers. Tasaki et al. (2009) promoted the degra-
dation of methyl orange using short-wavelength UV irradiation
with oxygen microbubbles. Zhang et al. (2009a) presented a pro-
cedure of degradation of C.I. Acid Orange 7 by ultrasound enhanced
heterogeneous Fenton-like process. Zhang et al. (2009b) studied
the organic dye removal from aqueous solution by pulsed discharge
on the pinhole. Oguz and Keskinler (2008) studied the removal of
color and COD from synthetic textile wastewaters using O3, PAC,
H2O2 and HCO3

�. Qu et al. (2007) employed the catalytic ozonation
of phenolic wastewater with activated carbon fiber in a fluid bed
reactor. Grabowski et al. (2007) analyzed the breakdown of meth-
ylene blue and methyl orange by pulsed corona discharge. Zhang
et al. (2007) studied the effect of granular activated carbon on
degradation of methyl orange when applied in combination with
high-voltage pulse discharge. Zhang et al. (2006) studied the
decolorization of methyl orange by ozonation in combination with
ultrasonic irradiation. Chen (2000) studied the optimal decolor-
ization process of methyl orange by ozone.

Chen (2000) studied the degradation of a methyl orange solu-
tion with the use of ozone as an oxidant and analyzing the effects
and interactions of pH, reaction temperature, stirring speed and the
concentration of methyl orange solution and ozone stream using a
fractional factorial 25�1. As response, the decolorization of the so-
lution during the reaction time was analyzed. The results showed
that ozone flow behaved as the most significant factor in decolor-
ization of MO solution. Also analyzing the interactions of the ef-
fects, the interaction between temperature and ozone flow were
more significant. This precisely occurs due to Henry's Law, which
states that the solubility of a gas inwater depends on the partial gas
pressure exerted on the liquid. The proportionality constant used in
this law varies with the gas and the temperature. Chen (2000)
compared the decolorization of methyl orange solution concen-
tration of 40mg/l over time due to the air flow and ozone, obtaining
a sharp difference between these two inputs. Using air there was a
small amount of dye degradation in solution about 2%. However,
when a bubbling ozone gas (980 ml min in pH 8.0) were used, the
degradation achieved values close to 99% in 20 min of reaction. It
has been found in this work also at high concentration dependence
of the dye in the degradation rate, and consequently the reaction
rate. The use of ozone as an oxidizer in advanced oxidation pro-
cesses (AOP's) has proven effective in removing textile effluents
color beyond the organic load removal quantified in terms of
Chemical Oxygen Demand (COD) or Total Organic Carbon (TOC)
(Poznyak et al., 2007).

Ge et al. (2016) investigated the degradation of a solution of
200 mg/L of methyl orange using ozone as an oxidant in the pres-
ence of iron ions and persulfate in a packed bed reactor. The sig-
nificance of pHwas checked as a function of color removal from the
solution, when experiments were carried out over a pH range from
1 to 11. A 85% reduction in color was observed under a pH optimum
around 4.0, which is according seen that pH values and above that
may occur the precipitation of iron ions present in solution. Also
evaluated was the mass transfer of ozone to methyl orange solu-
tion, conditioning this limiting step of the process.

Also in the dye treatment context, Grabowski et al. (2007)
studied the degradation solution of this compound in the pres-
ence of ozone as analyzed by monitoring the pH. The solution
concentration was 10 mg/L and removals of about 90% at 20 min of
reaction were obtained. A cost analysis was done on the basis of
corona discharge. The research point out a cost of treating a 1 m3 of
methyl orange solution in a concentration of 10 g/m3 of approxi-
mately 0.2 V/m3 and can reach up to V 1/m3 in industrial scales.

Methylene blue is also a dye widely used as a standard com-
pound for investigation of the treatment parameters that can also
be used for scale up in industrial processes. The industrial envi-
ronment, as waste textile industries for example, has in its
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composition the mixture of these dyes, which can be explained due
to its small grip in dyeing fabric. Therefore the mixture of methy-
lene blue and methyl orange solution was studied by Jin et al.
(2014), using RSM to determine the optimum factor levels used
(power to generate ozone gas flow and spacing between electrodes
which are responsible for generating the potential difference in the
equipment). Degradations about 94.5% and 80.2% of both color was
observed after 30 min of treatment. The higher degradation per-
centages for the methylene blue are to be expected, since a chloride
ion in the center of the molecule is responsible for the establish-
ment thereof, easily removed. However, the methyl orange consists
of an azo compound, which has a triple introduction of two ni-
trogen atomswhich is more complex to be broken. The dyemixture
as well as being a reality in the textile industry should be studied
more in intrinsic form, analyzing how its kinetic and thermody-
namic parameters can be changed according to the concentration
and physical effects related to the molecular size of each of com-
pounds known as steric effects. Another important issue to be
discussed in dye degradation is the issue related to alkalinity and
acidity of these compounds. Methyl Orange azo compound is
considered an acid while methylene blue is a basic compound. In
this context, Liu et al. (2014) studied the mixture of these com-
pounds, classified by him as acidic and basic. The color removal
over 21 min in a reactor achieved values higher than 90%, which
was considered by the author as a high amount of degradation. In
addition to the color removal Liu et al. (2014) also studied the
reduction of total organic carbon (TOC), which had a removal of
about 35% also in 21 min of reaction. The analysis due to the
interference of the pH during the reaction showed that the basic pH
is more efficient in the removal of color, especially in the removal of
TOC. The concentration of dissolved ozone in the solution was also
studied, showing a higher percentage of dissolved ozone at pH 4,
being considerably reduced at pH 10. Besides the use of ozone as
the oxidant, forms of implementation and catalyst compositions in
addition to the use of UV radiation has beenwidely used in order to
reduce the treatment time, coupled to reducing the cost of the
process and increasing its efficiency. Using UV, O3 and UV/O3, Li
et al. (2015) showed the treatment of Methyl orange solution,
achieving a 93% color removal over 60 min at pH 9.

In the paper of Oguz and Keskinler (2008) ozone was used
together with hydrogen peroxide, activated carbon and carbonate
in order to keep the residence time of ozone in solution. Color
removal and COD were recorded, with reductions of 99% and 95%,
respectively, over 30 min of reaction. The use of activated carbon as
catalyst, together with carbonate ions present in the medium,
further enhances the retention of the ozone in solution through a
surface effect, increasing the mass transfer of the gas, evidencing
the high COD removal in 30 min. Even using a hybrid process
combining UV and ozone, Tasaki et al. (2009) used a mercury vapor
lamp of 8W low pressure alongwith ozone dispersed in the form of
microbubbles (5.79 mm) to treat methyl orange solution. In this
context the removal of COD and color were respectively around 85%
and 97%. As already mentioned the importance of pH control dur-
ing treatment, tests were run to detect the best pH during treat-
ment, indicating values near neutrality, i.e., pH 6.9.

Still in the context of hybrid processes, Zhang et al. (2006) used
ozonation and ultrasound, seeking a greater reduction in color and
COD in a shortest time. In this context it was found the greatest
color removal rate with the increase of ultrasound power, following
a pseudo first order kinetics. The subject of use of ultrasound for the
removal of color, can be a factor which considerably increases the
cost of the process, with little difference of color removal from the
combination of ultrasonic and only ozone and ozone as oxidant.

During the production of ozone at high potential differences it
can be formed various other oxidants, such as oxygen free radicals,
H2O2, and hydroxyl radicals (Zhang et al., 2009b). These products
generated during the production of ozone, may also act in the
treatment process. Therefore, Zhang et al. (2009b) used these
generated radicals for decolorization of a methyl orange solution,
which evidenced a greater color removal by increasing the power of
the ozone generating equipment. However, very high powers can
promote the formation of undesirable compounds, such as oxides
of nitrogen class that can sequester the oxygen present in the input
feedstock which is very air thus lowering the ozone production
(Tang et al., 2009). Following this context, power it is determined at
the optimized pattern, and that any other around the value of this
point may decrease the process efficiency and increase process
costs.

As it will be seen in next sections, mean and variance of each
characteristic of interest may be extremely correlated even as the
multiples responses of wastewater treatment, like COD, DEC and
TOC, for example. Most of these characteristics must be maximized
while the prediction variance should be minimized. As these re-
sponses are general positively correlated it is not possible to
separate them in blocks of maximization andminimizationwithout
any multivariate statistical procedure. In general, two clusters may
be formed: one with the means of wastewater treatment charac-
teristics (DOC, DEC, TOC, among others) and other with the pre-
diction variance equations. To separate these blocks of responses
and to reduce the number of clusters, Factor Analysis (FA) may be a
feasible alternative. Factor analysis is a multivariate statistical
procedure capable of separate groups of objects (or responses in
this case) based on their correlations, enabling the creation of a
new responses in terms of independent factor scores which may be
extracted from the original data set using principal component
analysis (PCA) (Johnson andWichern, 2007). Taking the factor score
response surfaces for block of means and prediction variances the
trade-off between the minimization of variances and maximization
of wastewater treatment efficiencymay be conducted using the NBI
method, a multiobjective optimization algorithm capable of
generate a convex and equispaced Pareto Frontiers.

The aforementioned discussion was not found elsewhere and it
would be very useful to embody the trade-off aspect between the
optimality and predictability of the optimal conditions established
for the wastewater treatments. To accomplish this objective, this
paper presents a multivariate optimization entitled NBI-FA
approach. To illustrate its adequacy, the proposal is applied to a
treatment of Methyl Orange (MO) using ozone.

This paper is organized as follows: section 2 presents the sto-
chastic nature of the response surfaces and how the predictability
of such surfaces can be determinate; section 3 presents the basic
concepts of factor analysis (FA) and the respective varimax rotation
method; section 4 presents the general idea of Pareto frontier and
Normal Boundary Intersection (NBI) method; section 5 describes
the general framework of NBI-FA method; section 6 presents a case
study of Methyl Orange (MO) degradation using ozone; section 7
presents the results, comparisons among several optimization
methods, confirmation runs and a technical discussion.

2. The stochastic nature of response surfaces

Response Surface Methodology (RSM) is a collection of mathe-
matical and statistical tools used to model and analyze problems
whose desired responses are influenced by many variables
(Montgomery, 2009). In general, the relationship between depen-
dent and independent variables is unknown, then a reasonable
approximation for the real relationship between the response (Y)
and the set of independent variables (x) can be obtained using a
higher order polynomial, like the second-order model, in some
region of interest if there is significant curvature in the system.
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Such model can be described as:

YðxÞ ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

X
i< j

X
bijxixj þ ε (1)

where b is the polynomial coefficient, k is the number of factors and
ε is the error term.

Montgomery (2009) does not consider that a specific poly-
nomial model approximates a real model for the whole experi-
mental space covered for the independent variables, but for a
specific region, however, the approximation is usually efficient. The
Ordinary Least Squares (OLS) method is used to estimate the pa-
rameters (b). The residuals set is than obtained as:

L ¼
Xn
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ε
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In matrix form, Y ¼ bXþ ε and

L ¼ yTy � bTXTy � yTXbþ bTXTXb. Taking the derivative of L in

terms of the vector of coefficients b, it can obtain the estimates bb of
real coefficients. This method is called Ordinary Least Squares (OLS)
and can be expressed as follows:
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Since bb depends upon the data, such estimated coefficients can

be considered random variables with expected value EðbÞ ¼ bb and

CovðbbÞ ¼ s2ðXTXÞ�1, where X is design matrix and s2 is mean
square error. It can be shown that:
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(5)

The covariance matrix of the estimated coefficients ½CovðbbÞ� it is
generally used to build the (1-a)% confidence intervals for new

observations CIð1�aÞ ¼ by0±ta=2;n�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2½1þ xT0ðXTXÞ�1x0�
q

. It is

possible to show that:
E
hbY ðxÞ			x0i ¼ xðmÞT

0

��
XTX

��1�
XTY

��
and Var

hbY ðxÞ			x0i
¼ s2

�
xðmÞT
0

�
XTX

��1
xðmÞ
0

�
(6)

For k ¼ 2, for example, xðmÞT
0 ¼ xð2ÞT0 ¼ ½1; x1; x2; x21; x22; x1x2�.

It is straightforward that the precision of the predictions are
entirely related to the choice of a new point. In the optimization
case, this means that the optimum x0 can present a poor predict-
ability depending on its location on the experimental space. So, if a

precise estimate of the optimum is desired, the value of Var½bY ðxÞ�
must be minimized. In the algebraic form, Var½bY ðxÞ� can be written
as:

Var
hbY ðxÞi ¼Xn

i¼1

(
v
hbY ðxÞi
vbi

)2

bb i

s2bi

þ 2

8<:Xn�1

i¼1

Xn
j¼iþ1

(
v
hbY ðxÞi
vbi

)
bb i

(
v
hbY ðxÞi
vbj

)
bb j

� rbibj

�
ffiffiffiffiffiffiffiffiffiffiffiffi
s2
bi
s2
bj

q 9=;
(7)

Equations of mean and variance are generated from columns of
a design of experiment (DOE) matrix. Since the columns in DOE
arrays are independents, equation (7) will be simplified, such as:

Var
hbY ðxÞi ¼Xn

i¼1

(
v
hbY ðxÞi
vbi

)2

bb i

s2bi
(8)

In Eq. (8), s2
bi
is obtained from the main diagonal of ½CovðbbÞ�. For

a response surface with k ¼ 3 factors, after solving the partial de-

rivatives, Var½bY ðxÞ� may be written as:

Var
hbY ðxÞi ¼ s2b0

þ x21s
2
b1

þ x22s
2
b2

þ x23s
2
b3

þ x41s
2
b11

þ x42s
2
b22

þ x43s
2
b33

þ x21x
2
2s

2
b12

þ x21x
2
3s

2
b13

þ x22x
2
3s

2
b23

(9)

Since Var½bY ðxÞ� is convex, the minimum value of predicted
variance will occur at the center of the experimental design, near
center points. However, many times the center point will not be an

adequate value for the optimum of E½bY ðxÞ�. Then, to find out an

optimum that meets the minimization of Var½bY ðxÞ� and the opti-

mization (maximization/minimization) of E½bY ðxÞ� it is necessary to
use a trade-off strategy based on bi-objective optimization. Several
methods could be used to achieve such trade-off. In this paper, it is
suggested to focus the stochastic objective function formed by

E½bY ðxÞ� and Var½bY ðxÞ� using NBI. So, this problem leads to this pa-
per's first proposition. Fig. 1 illustrates the trade-off between
minimal prediction variances and maximum efficiency of waste-
water treatment. As it can be seen in Fig. 1, there is a conflict be-
tween these two objective functions that may beminimized using a
multiobjective optimization based on Pareto frontiers. One efficient
option is the NBI method which will be presented in the next
section.



Fig. 1. Schematic illustration of NBI for E[f(x)] versus Var [f(x)].
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3. Normal Boundary Intersection

Normal Boundary Intersection (NBI) (Das and Dennis, 1998) is a
method developed to compensate the shortcomings attributed to
the method of weighted sums as its inability to find a uniform
spread of Pareto optimal solutions, even if a uniform spread of
weight vectors are used. Besides the lack of uniformity among the
Pareto points in the frontier, if the Pareto set is non convex, the
Pareto points on the concave parts of the trade-off surface will be
missed. Pareto Frontier has been used as an important element in
the decision making process. Yan et al. (2016) built a Pareto frontier
between energy consumption and thermal efficiency comparing
the Fitness Sharing Genetic Algorithm (FSGA) and the traditional
GA; Jia et al. (2006) used an Elitist Non-dominated Sorting Genetic
Algorithm (NSGA) to build Pareto frontiers for environmental
versus economic objective functions. Although the objectives have
been properly achieved, it is observed that the Pareto frontiers are
not equispaced.

The use of Pareto frontiers with response surfaces has several
practical advantages since allows the researcher to establish a
priori and a posteriori solutions. In other words, if the quality of
Pareto solutions is related to the weights, such relationship may be
modelled and also optimized, leading to the discovery of better
solutions in the space mapped by the Pareto Frontier. Comparing to
the use of Grey Relational Analysis (GRA) using Taguchi designs in
bi-objective problems (Jozi�c et al., 2015) and multiobjective prob-
lems (Yan and Li, 2013) significant differences may be observed. For
example, GRA is measured (and calculated) only in the design
points, without modelling or optimization, and the decision mak-
ing process is done only choosing the best GRA index. Besides, the
importance of each response before the transformation to the index
is fixed which, in turns, does not allow the exploitation of other
possibilities.

Among the several multiobjective optimization methods that
are capable of building Pareto frontiers, Normal Boundary Inter-
section (NBI) stands as one of the most promising. NBI has been
recently used for multiobjective optimization of several engineer-
ing applications like in machining process with control and noise
variables (Brito et al., 2014), multivariate robust parameter design
(Lopes et al., 2016), dry end milling process (Costa et al., 2016),
environmental and economic hydrothermal self-scheduling
(Ahmadi et al., 2015a), planning of generation and transmission
expansion (Mavalizadeh et al., 2015), economic emission dispatch
(Ahmadi et al., 2015b), hydrothermal scheduling (Ahmadi et al.,
2015c), resource scheduling of renewable energy based on micro
grids (Izadbakhsh et al., 2015), multiobjective decision making
framework for electricity retailer in energy markets (Charwand
et al., 2015) among others.

The original formulation of NBI, which is graphically illustrated
for a bi-objective case in Fig. 2, can be mathematically written as:

Max
ðx;tÞ

t

S:t : Fbþ tbn ¼ FðxÞ
x2U
gjðxÞ � 0
hjðxÞ ¼ 0

(10)

In Eq. (10), t is a scalar perpendicular to the utopia line; F is the
payoff matrix obtained by a calculation of the individual minimum
of each objective function; F is the scaled payoff, b is the vector of
weights which represents different points along the utopia line;
FðxÞ is the vector of scaled objective functions and bn is a quasi-
normal vector.

The solution that minimizes the ith objective function fi ðxÞwill
be denoted by f �i ðx�i Þ. Otherwise, fiðx�i Þ is obtained when the indi-
vidual optimal solution x�i is substituted in the objective functions.

In the payoff matrix F and in the scaled payoff F the ith row in-
cludes the maximum and minimum values of the functions fi ðxÞ
that represent, respectively, their upper and lower limits. This
values are used to normalize the objective space, mainly by writing
it in terms of different scales or units.

The individual minimum vector

f U ¼ ½f *1 ðx*1Þ;…; f *i ðx*i Þ;…; f *mðx*mÞ�T , is known as Utopia point. The
Utopia point is a specific point, generally outside of the feasible
region, that corresponds to all objectives simultaneously being at
their best possible values. Otherwise, considering the vector with
the worst (maximum) values of each objective function

f N ¼ ½f N1 ;…; f Ni ;…; f Nm �T , it is obtained Nadir point. The two anchor
points connected by the Utopia line are obtained when the ith
objective is minimized independently, while f �i represents the in-
dividual minima of the ith objective. The payoff matrices are given
as:

F ¼
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Where: f iðxÞ ¼
"
fiðxÞ�f Ui
f Ni �f Ui

#
¼
"
fiðxÞ�f Ii
f MAX
i �f Ii

#
Normal Boundary Intersection (NBI) can be understood as a

perpendicular line to the utopia line (or the convex hull of
individual minima - CHIM) in a point that is so far from the

CHIM. Normal line is defined as r!ðtÞ ¼ ½ x0 y0 z0 �T þ t

�V
!
f ½ x0 y0 z0 �T , where t is a scalar. In other words, it is neces-

sary just one point on the plane or surface and a specific direction
vector to its construction. Considering that the t is the distance



Fig. 2. Pareto Frontier for bi-objective problems obtained with NBI (Costa et al., 2016).
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between P0 (any point in CHIM) and a point Pmax (a point in the
Pareto Frontier or “Boundary”), when t is a maximum, the normal
line will intercept the boundary keeping the orthogonality. This
conditionwill be repeated for any point in the CHIM represented by
the vector or weights. This is essentially the nature of NBI method
(Costa et al., 2016).

The classical formulation of NBI can be rewritten for the class of
bi-objective problems as:

8>>>>><>>>>>:

Min
x

FðxÞ ¼ f 1ðxÞ
St: : f 1ðxÞ � f 2ðxÞ þ 2b1 � 1 ¼ 0
x2U
gjðxÞ � 0
hjþ1ðxÞ ¼ 0

(12)

The Pareto set obtained with NBI provides several optimal and
feasible solutions, however, from different perspectives, some so-
lutionsmay bemore appropriate than others. Thereby, the choice of
the best solution of the frontier may be done using some perfor-
mance index, whose value can help the researcher to select the
most appropriate optimal. Several indexes and algorithms have
been recently proposed to this task, like TOPSIS (Technique for
Order Preference by Similarity to Ideal Solution) (Ahmadi et al.,
2015b), Entropy and Global Percentage Error (GPE) (Rocha et al.,
2015) and Fuzzy Decision Maker (DM) (Ahmadi et al., 2015a)
which will be employed in this paper. Basically, Fuzzy DM works
calculating a membership function to every objective function
value represented in the Pareto set, and determining the relative
distance from each objective to the ideal solution. In other words,
larger fuzzymemberships indicates the optima is near to the Utopia
and far from the pseudo Nadir point.

For the response surfaces whose objective is the minimization,
Ahmadi et al. (2015a) recommends that the individual fuzzy
membership may be calculated as:

mrn ¼

8>>>>>><>>>>>>:

1 f rn � f Un

f SNn � f rn
f SNn � f Un

f Un � f rn � f SNn

0 f rn � f SNn

(13)

where fnr is function value for a specific weigh in the Pareto frontier,
fn
U is the Utopia point and fn

SN is the pseudo Nadir point.
For response surfaces that must be maximized, the individual

fuzzy membership may be calculated as:
mrn ¼

8>>>>>><>>>>>>:

0 f rn � f SNn

f rn � f SNn
f Un � f SNn

f SNn � f rn � f Un

1 f rn � f Un

(14)

Based on these equations, the total membership index can be
stated as:

mr ¼
Pp

n¼1wnmrnPp
n¼1wn

(15)

where wn is the relative significance of each objective function.
Generally, this weight is arbitrary and may be chosen according to
the researcher desire. In the present paper, since the considered
objective functions are response surfaces of rotated factor scores,
the values of wn will be fixed as eigenvalues associated to each
factor score.

A considerable drawback of NBI is the large number of sub-
problems involved in the computation of Pareto frontier. According
to Das and Dennis (1998) the number of NBI grid is equal to:

Nsub ¼
�
nþ p� 1

p



(16)

where n is the number of objective functions and p is the inverse of
increment used in the Pareto grid.

For example, suppose that there are four objective functions and
the Pareto set may be built with increments of 5%. Following Eq.
(16), the number of subproblems is equal to 1771. Adopting in-
crements of 10%, the number of subproblems decreases to 286.
However, if some dimensionality reduction strategy is employed
allowing the use of just two objective functions, with increments of
5%, only 21 subproblems should be solved. According to �Cu�cek et al.
(2014) if several objective function are simultaneously considered,
the time spent in obtaining the entire solution space increases,
making difficulty the visualization and interpretation of solution of
the objective and solution spaces. Thereby, a dimensionality
reduction technique may be important in order to facilitate the
comprehension of solution space (�Cu�cek et al., 2014). Among the
available reduction dimensionality techniques it can be cited the
researches of Costa et al. (2016), Lopes et al. (2016), Brito et al.
(2014) that used Principal Component Analysis (PCA). Differently,
this work proposes the use of Factor Analysis (FA) as a way to deal
with several correlated objective functions.
4. Factor analysis

Factor analysis (FA) is a multivariate statistical technique
capable of describing in a few underlying but unobservable factors,
the covariance relationships amongmany variables. Supposing that
the variables can be grouped by their correlations, all the variables
belonging to a specific group will be highly correlated among
themselves, but will have very small correlation with variables of
different groups (Johnson and Wichern, 2007). This technique can
be considered an extension of principal component analysis.

A factor model postulates that an observable random vector X,
with p components, mean vector m and variance-covariance matrix
S, is linearly dependent upon a few unobservable randomvariables
F1, F2, …, Fm, called common factors, and p additional sources of
variation called errors (or specific factors), such as:
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X� m
ðp�1Þ

¼ L
ðp�mÞ

F
ðm�1Þ

þ ε

ðp�1Þ
(17)

In Eq. (17), L is the matrix of factor loadings that can be calcu-
lated following the spectral decomposition of the variance-
covariance matrix, such as:

S ¼ l1e1eT1 þ l2e2eT2 þ/þ lpepeTp
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p
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37775 ¼ LLT (18)

The factor loadings are then the eigenvectors of variance-

covariance matrix S, scaled by
ffiffiffiffi
lj

q
factor. Since

S ¼ EðX� mÞðX� mÞT , then:
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(19)

where J is a diagonal matrix formed by the specific variances ji,
such as ji ¼ s2i � h2i . The ith communality h2i is the sum of squares
of the loadings of the ith variable on the m common factors. Like in
the theory of principal components, the original data set can also be
represent by uncorrelated factors called “Factor scores” only
considering Z, the matrix of standardized values of X, and the
matrix of loadings L, such as:

F ¼ Z
�
L
�
LTL

��1
�

(20)

The factor loadings can be rotated using an orthogonal trans-
formation until a simpler structure is achieved, i.e., the factor
rotation can lead to a separation of groups that is easier of inter-

pretation. In this case, L* ¼ LT, where TTT ¼ TTT ¼ I. This trans-
formation does not alter the communalities and specific variances.
The most effective rotation procedure was suggested by Kaiser
(Johnson and Wichern, 2007) and is known as Varimax criterion. In
this approach, the rotated coefficients are scaled by the square root

of the communalities, producing ~[
*
ij ¼ ~[

*
ij=
bhi.Then, the Varimax

procedure selects the orthogonal transformation that:

MaxV ¼ 1
p

Xm
j¼1

24Xp
i¼1

~[
*4
ij �

 Xp
i¼1

~[
*2
ij

!2,
p

35 (21)

The aforementioned statistical and optimization methods (RSM,
FA and NBI) may be combined in a newalgorithm capable of solving
the trade-off problem between expected value and prediction
variance for optimal condition for any optimization process, like
wastewater treatments. According to the number of objective
functions, NBI-FA method may be structured in the following
propositions:

Proposition 1. Suppose that NBI may be applied to solve the

simultaneous optimization of the expected value of Y, ½bY ðxÞ� and
the predicted variance of ½bY ðxÞ�, Var½bY ðxÞ�. Consider that two spe-
cific weights b1 and b2, such that b1 þ b2 ¼ 1 and b1 >0 , b2 >0, can
be arbitrarily chosen to express the degree of importance of each
one of the two objective functions. So, combining them into a
weighted sum, it may write:

Min
x2U

MSE ¼ b1E
hbY ðxÞiþ b2

(Xn
i¼1

(
v
hbY ðxÞi
vbi

)2

bb i

s2bi

)
(22)

If these two objective function are scaled by their respective

Utopia f Ið�Þ and Nadir f Nð�Þ points, such as f 1ðxÞ ¼ f ðmÞðxÞ and

f 2ðxÞ ¼ f ðs2ÞðxÞ, and if an experimental space constraint

g2ðxÞ ¼ xTx � r2 is added to the problem, then a NBI formulation
for solving the stochastic problem attributed to response surfaces
will be written as:

Min f ðmÞðxÞ ¼
24fðmÞðxÞ � f UðmÞ

f NðmÞ � f UðmÞ

35s:t: : g1ðm;s2ÞðxÞ

¼
24fðmÞðxÞ � f UðmÞ

f NðmÞ � f UðmÞ

35�
24fðs2ÞðxÞ � f Uðs2Þ

f Nðs2Þ � f Uðs2Þ

35þ 2bi � 1

¼ 0 g2ðxÞ ¼ xTx � r2 0 � wi � 1

(23)

where:

fmðxÞ ¼ E
hbY ðxÞi; fs2ðxÞ ¼ Var

hbY ðxÞi; f ðmÞðxÞ
¼

fðmÞðxÞ � f UðmÞ
f NðmÞ � f UðmÞ

and f ðs2ÞðxÞ ¼
fðs2ÞðxÞ � f Uðs2Þ
f Nðs2Þ � f Uðs2Þ

Fig. 3 presents a schematic view of how NBI method can be used
to solve the problem (see Fig. 4).

Suppose now that there are response surfaces representing each

one of p correlated objective functions bYpðxÞ, that can be deployed

in two blocks of objective functions: means, fpm ðxÞ ¼ E½bYpðxÞ� and
variances, fs2

p
ðxÞ ¼ Var½bYpðxÞ�. As mentioned earlier, it can be noted

that since xðmÞT
0 and X are the same in both models, E½bY ðxÞ� and

Var½bY ðxÞ� will be highly correlated. Suppose it is necessary to

simultaneously maximize E½bY ðxÞ� andminimize Var½bY ðxÞ� but these
functions exhibits a highly positive correlation. How is it possible to
build a Pareto Frontier for these objective functions if axes are
dependents?

Proposition 2. If the objective functions are positively correlated
with different optimization directions, than it is necessary to
project a new system of axes that are independent. This task could
be accomplished using Factor Analysis with scores extracted by
principal component analysis (PCA) and applying a varimax rota-
tion to obtain the independent axes with equivalent weights. The
original responses will be replaced by the factor scores of the
original ones. Then the new expected value and variance of the
original models will be written as:



Fig. 3. Schematic illustration of NBI for E[f(x)] versus Var [f(x)].

Fig. 4. Calibration curve of MO concentration versus absorbance.
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where: F ¼ Z½LðLTLÞ�1�, L is the matrix of loading vectors and Z is
the standardized value of the original responses as mentioned
earlier.

So, the FA-NBI optimization approach can be written as:

Min f ðmÞðxÞ ¼
24bF sðmÞðxÞ � bFUsðmÞbFN

sðmÞ � bFUsðmÞ
35s:t: : g1ðm;s2ÞðxÞ

¼
24bF sðmÞðxÞ � bFUsðmÞbFN

sðmÞ � bFUsðmÞ
35�

24bF sðs2ÞðxÞ � bFU
sðs2ÞbFN

sðs2Þ � bFU
sðs2Þ

35þ 2bi � 1

¼ 0 g2ðxÞ ¼ xTx � r2 0 � wi � 1

(25)

To compare the results of this proposal with traditional Multi-
objective Optimization Problems (MOP) algorithms, it will be
considered the Weighted Sums methods (Eq. (26)) and the Global
Criterion Method (Eq. (27)). Such equations can be stated respec-
tively as follows:

Minimize FðxÞ ¼ w1

h
f 1ðxÞ

i
þ ð1�w1Þ

h
f 2ðxÞ

i
Subject to x2U

(26)

Minimize FðxÞ¼w1

"
f1ðxÞ� f N1 ðxÞ
f U1 ðxÞ� f N1 ðxÞ

#2
þð1�w1Þ

"
f2ðxÞ� f N2 ðxÞ
f U2 ðxÞ� f N2 ðxÞ

#2
Subject to x2U

(27)

To illustrate the fundamental steps of NBI-FA, next section will
present a case study involving the multiobjective optimization of
methyl orange degradation by ozone. A central composite design
for three factors (x1 ¼ pH, x2 ¼ air flow and x3 ¼ ozone dosage) will
be developed to assess the expected value E[f(x)] and prediction
variance Var[f(x)] of dye removal (Y1) and chemical oxygen demand
removal (Y2). Principal component factor analysis will be consid-
ered to extract underlying data representing the original data set.
Applying varimax rotation, factor scores will be computed which
enables the modelling of E[f1(x)], E[f2(x)], Var[f1(x)] and Var[f2(x)],
respectively.

5. Materials and methods

To illustrate the feasibility of NBI-FA approach as an alternative
to solve multiobjective optimization problems, the proposal is
applied to treatment of Methyl Orange (MO) using ozone. Ozona-
tion is an environmentally sound technique because of no sludge
formation have the potential to perform decolorization and
degradation in a single step. According to Robinson et al. (2001), the
use of ozone started in the early 1970s, and it is a very good
oxidizing agent due to its high instability compared to other
oxidizing agents. Some of the advantages of this treatment process
are: the decomposition of residual ozone into water and oxygen,
less space requirement for equipment installation, less hazardous
as no stock of H2O2 is required for the oxidation step and ease of
operation (Asghar et al., 2015). Besides the low cost and high
removal rates, the main advantage of ozonation is the complete
degradation of the organic compound which does not happen in
conventional and biological processes because of the high



Table 1
Factors and levels adopted in the study.

Factors Units Levels

�1.682 �1.000 0.000 þ1.000 þ1.682

pH (x1) e 3 5 7 9 11
Air flow (x2) l.min�1 2 3 5 7 9
Ozone Dosage (x3) g.h�1 8 13 18 21 34
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recalcitrance. Another advantage is the decomposition of ozone
into oxygen during the reaction, which does not compromise other
unit operations for separating secondary compounds formed dur-
ing the reaction. The main drawback is that ozone can not be
stored; all the needed solution must be generated and promptly
used. However, there are researchers who reported that the half life
of ozone in solution can reach up to 165 min, depending on the
conditions mainly governed by Henry's Law.

The innovation of this study concerns the use of statistical tools
and NBI for the understanding of solution treatment process con-
taining a dye. This is a very common compound in the textile in-
dustry. Otherwise, the considerable difficulty in maintaining a
sewage treatment plant at a steady state justifies the need of
models that can simultaneously correct the variance and themeans
of flows faster and accurately while maintaining the final disposal
condition at an accepted level. Setups capable of maximizing the
removal rates for decolorization and COD with low values of vari-
ance favor the obtaining of a more stable process.

5.1. Reagents

The dye chosen for the studywas themethyl orange (MO)which
is known as a standard mono azo compound. The molecular weight
of the dye was 327.33 g/mol with maximum absorption at
l¼ 420 nm. In this study, some important parameters (initial color,
ozone dosage and pH) were varied to determine the optimum
condition of the treatment process in degrading MO. It was also
used sulfuric acid and sodium hydroxide for pH control solutions of
0.5 mol/L. All chemicals were used as received without further
purification. The Methyl orange solution was purchased from
VETEC Ltda (Rio de Janeiro, Brazil) and the sulfuric acid and sodium
hydroxide were purchased from Bioquimis (Rio de Janeiro, Brazil).
The ozone generator was built in the laboratory of the Federal
University of S~ao Jo~ao Del Rei (MG e Brazil).

The methyl orange solution was chosen in this study because it
is a standard compound for this type of analysis with an azo
characteristic difficult to degrade. Otherwise, small masses of this
compound in water confer high color in solution. So, discharges in
an inappropriate manner can contaminate water bodies reducing
sunlight penetration in the photic zone and thus reducing the
generation of oxygen produced from algae present in this region.

5.2. Reactor configuration

The reactions were done in a useful volume of reactor of 2 L,
made in acrylic, composed of ozone gas input and two outputs, one
for collecting samples to be analyzed and the other for output of
residual ozone which will then be degraded in a tank with potas-
sium iodide solution. The reaction time of recirculation in the
reactor was kept constant in 30 min. Meanwhile, the initial pH of
the influent (pH 8), temperature (30 	C), dye concentration
(100 mg/L) and hydraulic retention time of the reactor (30 min)
were kept constant to reduce the number of factors and to simplify
the experimental design. The selection of factors and the chosen
levels were determined based on previous studies and initial
screening experiments of various parameters and different levels.
To further refine the input factors order when applying a surface
response methodology, the model was evaluated in terms of cur-
vature using a 23 full factorial design with six center points.

5.3. Experimental procedures

For each experiment, ozone was introduced into the reactor at
different flow rates and pre-fixed pH's. The air flow rate was
controlled by a flow meter, calibrated for use with air, with range
between of 0e15 l/min. All experiments were carried out using 2 L
samples in an ozone reactor with a height of 65 cm and an inner
diameter of 16.5 cm. Dye concentration and pH were measured
prior to initiation of treatment in the reactor. Ozone was produced
using OM1 equipment, built and validated by the experimenter
owner. The maximum flow of ozone produced by the machine
using 100% of its capacity was 9.3 g O3/h.
5.4. Analytical methods

The concentration of the dye was determined from a calibration
curve as a function of absorbance as determined by a HACH spec-
trophotometer, and the concentration of stock solutions prepared.
The pH was measured by a portable digital pH/Mv meter. The total
organic load removal was determined by an organic carbon
analyzer (TOC), tag Shimadzu TOC-LCSH model. The concentration
of the color was measured using a Hach DR 2800 spectrophotom-
eter. The removal efficiency of COD and color were obtained using
in the following equation:

Yð%Þ ¼ 100�
�
Ci �

Cf
Ci

�
(28)

where Ci and Cf respectively refer to the initial and final COD and
color.

The oxidation of the dye can take place via two different ki-
netics: a direct reaction, using ozone as the oxidant, and a parallel
reaction inwhich there is the formation of hydroxyl radicals, which
have a higher oxidation potential than the ozone only. In both cases,
the pH will interfere directly in the process of decomposition of
ozone influencing the mass transfer of the gas inside the reactor. In
this study it can be seen that the pH played a significant role in the
process: more alkaline pH's favors the indirect reaction and more
acid pH's favors the forward reaction, favoring the degradation of
most of the dye via ozone. The removal of COD and color were
increased by increasing pH. These phenomena are attributed to the
ability of O3 to initiate hydroxyl radical at high pH levels, which has
an oxidation potential (E0 ¼ 2.80) higher than O3 (E0 ¼ 2.07) in the
direct reaction at acidic condition.
6. Experimental design

In the present study, a central composite design (CCD) was run
to model and optimize the experimental parameters and assess the
relationships between three significant independent variables: (1)
pH, (2) Air Flow an (3) Ozone dosages. The respective levels
adopted in this work are shown in Table 1. The complete CCD design
is presented in Table 2.

The pH, air flow and the ozone dosage were combined in a
2k ¼ 23 ¼ 8 factorial points, six axial points (2k ¼ 6) and six center
points (cp ¼ 6), resulting in 20 experiments. An axial distance of
1.682 was adopted which corresponds to a spherical constraint
g(x) ¼ xTx � 2.829.

Table 2 also presents the responses of dye reduction (Y1) and



Table 2
Central composite design.

x1 x2 x3 Y1 Y2 Var[Y1(x)] Var[Y2(x)] F1 F2

�1.0000 �1.0000 �1.0000 81.02 74.69 6.6905 8.2202 0.2906 �0.8049
1.0000 �1.0000 �1.0000 85.03 84.12 6.6905 8.2202 0.4437 0.2586
�1.0000 1.0000 �1.0000 69.87 65.44 6.6905 8.2202 �0.1018 �2.5450
1.0000 1.0000 �1.0000 83.21 79.32 6.6905 8.2202 0.3732 �0.2614
�1.0000 �1.0000 1.0000 89.78 82.64 6.6905 8.2202 0.6002 0.6112
1.0000 �1.0000 1.0000 81.45 78.97 6.6905 8.2202 0.3134 �0.4564
�1.0000 1.0000 1.0000 90.02 82.69 6.6905 8.2202 0.6084 0.6380
1.0000 1.0000 1.0000 91.06 88.02 6.6905 8.2202 0.6538 1.1206
�1.6818 0.0000 0.0000 83.24 73.96 8.0785 9.9243 0.8486 �0.5216
1.6818 0.0000 0.0000 92.40 85.96 8.0785 9.9243 1.1796 1.2235
0.0000 �1.6818 0.0000 87.89 79.98 8.0785 9.9243 1.0165 0.3592
0.0000 1.6818 0.0000 87.67 80.87 8.0785 9.9243 1.0109 0.4017
0.0000 0.0000 �1.6818 67.64 67.50 8.0785 9.9243 0.3123 �2.4914
0.0000 0.0000 1.6818 86.28 83.28 8.0785 9.9243 0.9689 0.4403
0.0000 0.0000 0.0000 89.78 87.30 1.0043 1.2381 �1.3772 0.4487
0.0000 0.0000 0.0000 90.78 88.96 1.0043 1.2381 �1.3403 0.6643
0.0000 0.0000 0.0000 87.25 87.65 1.0043 1.2381 �1.4614 0.2295
0.0000 0.0000 0.0000 87.82 86.28 1.0043 1.2381 �1.4450 0.1863
0.0000 0.0000 0.0000 86.48 84.78 1.0043 1.2381 �1.4929 �0.0507
0.0000 0.0000 0.0000 88.90 89.89 1.0043 1.2381 �1.4016 0.5495

Table 4
ANOVA for full quadratic model of COD removal (Y2).

Source DF Adj SS Adj MS F P-Value

Model 9 843.831 93.759 28.260 0.000
Linear 3 373.982 124.661 37.570 0.000
x1 1 149.277 149.277 44.990 0.000
x2 1 0.873 0.873 0.260 0.619
x3 1 223.832 223.832 67.460 0.000

Square 3 321.656 107.219 32.310 0.000
x12 1 79.927 79.927 24.090 0.001
x22 1 69.158 69.158 20.840 0.001
x32 1 227.223 227.223 68.480 0.000

2-Way Interaction 3 148.193 49.398 14.890 0.001
x1 x2 1 22.613 22.613 6.820 0.026
x1 x3 1 58.590 58.590 17.660 0.002
x2 x3 1 66.990 66.990 20.190 0.001

Error 10 33.179 3.318
Lack-of-Fit 5 16.390 3.278 0.980 0.510
Pure Error 5 16.790 3.358
Total 19

Model R2: 96.22% R2 adj.: 92.81%
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COD removal (Y2). The variances for the predictions of dye removal
and chemistry demand oxygenwere calculated according to Eq. (8)
and the rotated varimax factor scores (F1 and F2) according to Eq.
(20).

7. Results, modelling, comparisons and discussion

7.1. Response surface modelling

Tables 3 and 4 present the ANOVA for the full quadratic models
of dye reduction (Y1) and COD removal (Y2), respectively. It is
possible to observe an adjusted determination coefficient (R2 adj.)
of 93.63% for Y1(x) and of 92.81% for Y2(x). The P-values presented
in these tables reveal that some effects (and terms) are not statis-
tically significant and may dropped from the model.

Fig. 5 presents the Pareto Chart for the standardized effects of
Y1(x) and Y2(x) with the respective (a) T-Value statistic (blue line)
and (b) Bonferroni Limit (red line) for all effects of a full quadratic
model. It is also noticed that the residual from these models are
normally distributed. Although some terms are not significant, we
will adopt the full quadratic model for all response surfaces used in
this work.
Table 3
ANOVA for full quadratic model of dye reduction (Y1).

Source DF Adj SS Adj MS F P-Value

Model 9 778.478 86.498 32.020 0.000
Linear 3 353.273 117.758 43.590 0.000
x1 1 47.484 47.484 17.580 0.002
x2 1 0.892 0.892 0.330 0.578
x3 1 304.898 304.898 112.870 0.000

Square 3 240.509 80.170 29.680 0.000
x12 1 0.830 0.830 0.310 0.592
x22 1 0.930 0.930 0.340 0.570
x32 1 239.840 239.840 88.790 0.000

2-Way Interaction 3 184.696 61.565 22.790 0.000
x1 x2 1 43.711 43.711 16.180 0.002
x1 x3 1 75.891 75.891 28.100 0.000
x2 x3 1 65.094 65.094 24.100 0.001

Error 10 27.012 2.701
Lack-of-Fit 5 13.910 2.782 1.060 0.475
Pure Error 5 13.102 2.620
Total 19 805.491

Model R2: 96.65% R2 adj.: 93.63%
Applying the ordinary least squares in the results shown on
Table 2, it is possible to obtain the 6 s order models for dye
reduction (Y1) and COD removal (Y2), their respective prediction
variances and rotated factor scores. These models are summarized
in Table 5. The full quadratic models of the six responses are all
significant, with an acceptable level of R2 adj. The response surfaces
of expected value (mean) and variance of Y1 and Y2 are shown on
Figs. 6 and 7.

Table 6 presents the correlation analysis of the six responses. It
is possible to verify that dye removal (Y1) and COD removal (Y2) are
positively correlated (r¼ 0.880) as well as the variances (r¼ 1.000).
Therefore, since these responses are positively correlated with in-
verse optimization directions it is necessary to separate the two
groups of objective functions.

Table 7 shows the results of a factor analysis based on principal
components. This table also presents the rotated and unrotated
results. It is possible to note that with two factors, 97.7% of the
variance can be explained.

Observing the rotated factor loadings (values in bold), it is easy
to conclude that factor 2 is highly correlated with expected value of
dye removal (Y1) and COD removal (Y2), while factor 1 are corre-
lated with the prediction variances of these responses. Moreover,



Fig. 5. Pareto Chart for standardized effects of Y1(x) and Y2(x) and residual plots.

Table 5
Full quadratic models.

Terms Y1(x) Y2(x) Var[Y1(x)] Var[Y2(x)] F1(x) F2(x)

b0 88.502 87.430 1.0630 1.3101 �1.3990 0.3400
b1 1.865 3.306 0.0000 0.0000 0.0691 0.4172
b2 �0.256 �0.253 0.0000 0.0000 �0.0091 �0.0428
b3 4.725 4.048 0.0000 0.0000 0.1665 0.7466
b11 �0.240 �2.355 2.1176 2.6002 0.7272 �0.0071
b22 �0.254 �2.191 2.1176 2.6002 0.7270 0.0033
b33 �4.080 �3.971 2.1176 2.6002 0.5951 �0.4938
b12 2.337 1.681 0.0000 0.0000 0.0820 0.3463
b13 �3.080 �2.706 0.0000 0.0000 �0.1090 �0.4915
b23 2.852 2.894 0.0000 0.0000 0.1010 0.4830
R2: 96.65% 96.22% 93.91% 93.89% 93.12% 96.56%
R2. adj.: 93.63% 92.81% 88.42% 88.39% 86.92% 93.47%

Fig. 6. Response surfaces of Y1(x) an
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when the factors are rotated, their respective eigenvalues becomes
more similar thanwithout varimax rotation. For Pareto frontier and
NBI optimization, this fact is very important, since means that the
two axes of the Pareto frontier have approximately the same
weights. Although the unrotated factors have the same explana-
tion, the loadings are weaker and eigenvalues are very different. If
one uses the functions of these unrotated scores to build a Pareto
frontier, a bias could be introduced in the optimization analysis,
forcing one block of response to present better results than the
other, independently from the assigned weights. So, NBI could now
be applied with the second order model for factor score 1 and 2
representing respectively the block of prediction variances and
means.
d Var[Y1(x)]. Hold value x3 ¼ 0.



Fig. 7. Response surfaces of Y2(x) and Var[Y2(x)]. Hold value x3 ¼ 0.

Table 6
Correlation matrix of original variables and rotated factor scores.

Variable Y1(x) Y2(x) Var[Y1(x)] Var[Y2(x)] F1(x)rot

Y2(x) 0.881
0.000a

Var[Y1(x)] �0.313 �0.519
0.179 0.019

Var[Y2(x)] �0.313 �0.519 1.000
0.179 0.019 0.000

F1(x)rot �0.106 �0.342 0.977 0.977
0.655 0.139 0.000 0.000

F2(x)rot 0.974 0.912 �0.209 �0.209 0.000
0.000 0.000 0.376 0.376 1.000

a -Values in bold represent significant correlations (P-Value<5%).

Table 7
Factor Analysis based on principal components.

Variable Factor 1 Factor 2 Communality

Unrotated Y1(x) �0.732 0.652 0.961
Y2(x) �0.865 0.448 0.949
Var[Y1(x)] 0.866 0.499 0.999
Var[Y2(x)] 0.866 0.499 0.999

Eigenvalues 2.7833 1.1252 3.9085
% Variance 0.6960 0.2810 0.9770

Rotated Y1(x) �0.106 0.974a 0.961
Y2(x) �0.342 0.912 0.949
Var[Y1(x)] 0.977 �0.209 0.999
Var[Y2(x)] 0.977 �0.209 0.999

Eigenvalues 2.0395 1.8690 3.9085
% Variance 0.5100 0.4670 0.9770

a e Values in bold are the factors loadings relatives to factors 1 and 2.
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7.2. NBI-FA multiobjective optimization

Using the NBI-FA method and varying iteratively the weights
from 0 up to 1, it was obtained the results shown in Table 8. Figs. 8
and 9 show the Pareto frontiers of expected mean and variances for
Y1 and Y2 as well as for F1(x) versus F2(x).

It can be verified that the Pareto frontiers are equispaced and
convex. Moreover, it is possible to note that as the weights for the
response surface of factor score 1 increases, the prediction variance
and, consequently, the standard error of prediction of Y1 and Y2

decreases while the confidence interval for the predictions be-
comes narrower (Fig. 10).

The optimization results showed a maximum dye removal of
94.1% ± 4.3 with a respective chemical oxygen demand removal of
88.4% ± 5.3 obtained at x* ¼ [9.5; 7.1 l min�1; 18.4 g h�1]. However,
this point have presented the largest 95% prediction confidence
interval. Based on the fuzzy membership of Pareto set it was
possible to select the narrowest 95% confidence intervals with
maximum removal rates (Y1 ¼ 90.5 ± 2.2 and Y2 ¼ 88.3 ± 2.7),
obtained at x* ¼ [7.9. 5.6 l min�1. 18.4 g h�1].
7.3. Comparisons among several MOP methods

To assess the efficiency of NBI-FA method, several comparisons
were done. The main results were plotted in Figs. 11 and 12. Firstly,
NBI,Weighted Sums (WS) and Global CriterionMethod (GCM)were
applied directly in Y1(x) and Y2(x). These results may be compared
to the values of Y1(x) and Y2(x) obtained by the optimization of
F1(x) and F2(x) using NBI (Table 8) according to Fig. 11. It is inter-
esting that NBI outperforms WS and GCM for Y1(x) and Y2(x) when
applied directly in Y1(x) and Y2(x), generating an equispaced and
convex frontier, but inverts the correlation of the original response
that is positive (Pearson's correlation coefficient r¼þ0.881), which
is a serious mistake. In other words, if the correlation between the
responsewere not removed from the original data set, the objective
functions modelled by RSM will not be able to respect the original
correlation.

Why does it happen? Considering the fact that a bi-objective
weighted sum is a convex combination of two objective func-
tions, if the objective functions are positively correlated the appli-
cation of complementary weights (w and 1-w) probably inverts this
direction. Despite of this, the values of Y1(x) and Y2(x) obtained
with NBI-FA presented a positive correlation (r ¼ þ0.774) which is
very compatible with the original correlation.

Analogously, NBI, WS and GCM were applied with the response
surfaces of rotated factor scores F1(x) and F2(x). Fig. 12 shows these
comparison results. It can be noted that only NBI-FA is capable of
generating equispaced and convex Pareto frontiers which proves
the good adequacy of the method.

Comparing the Pareto Frontier of E½Y1ðxÞ� � Var½bY 1ðxÞ�, obtained
with NBI applied directly in the expected value and variance
response surfaces with the results obtained with NBI-FA, it is clear
that the frontier plotted with rotated factor scores is longer than
that drawnwith the original values which points out the capability
of NBI-FA to better explore the solution space. NBI-FA promoted
larger values for dye removal (94.0%) when compared to mean and
variance approach. In Fig. 13 it is possible to note that the Pareto
solution obtained with the weight of 15% in the frontier of

E½Y1ðxÞ� � Var½bY 1ðxÞ� is equivalent to a solution obtained with 40%
in NBI-FA. For larger weights, however, these differences practically
disappear.

Fig. 14 presents a fuzzy decision maker comparisons among the
Pareto sets obtainedwith three different approaches: NBI-FA, GCM-
FA and WS-FA. According to this criterion, the best compromise
solution occurs with NBI-FA method at the weight of 75%. This



Table 8
Pareto points and optimal values.

W Y1(x) Y2(x) Var[Y1(x)] Var[Y2(x)] F1(x) F2(x) x1* x2* x3* FDM

0.00 94.113 88.354 7.054 8.667 0.854 1.383 1.267 1.049 0.352 0.478
0.05 93.875 88.445 6.667 8.192 0.712 1.338 1.213 1.021 0.366 0.493
0.10 93.651 88.511 6.282 7.718 0.571 1.292 1.169 0.980 0.369 0.507
0.15 93.427 88.572 5.898 7.247 0.431 1.246 1.124 0.939 0.371 0.521
0.20 93.202 88.627 5.516 6.778 0.291 1.200 1.078 0.895 0.373 0.535
0.25 92.974 88.676 5.137 6.313 0.152 1.153 1.029 0.851 0.375 0.549
0.30 92.746 88.718 4.760 5.850 0.014 1.106 0.979 0.803 0.377 0.562
0.35 92.515 88.750 4.386 5.391 �0.124 1.058 0.926 0.754 0.378 0.574
0.40 92.283 88.773 4.016 4.936 �0.260 1.010 0.871 0.701 0.379 0.587
0.45 92.047 88.784 3.650 4.487 �0.395 0.961 0.813 0.646 0.379 0.598
0.50 91.809 88.781 3.289 4.044 �0.528 0.911 0.751 0.587 0.379 0.609
0.55 91.567 88.760 2.934 3.608 �0.659 0.860 0.684 0.522 0.377 0.619
0.60 91.320 88.716 2.588 3.182 �0.788 0.808 0.613 0.453 0.373 0.628
0.65 91.067 88.642 2.251 2.769 �0.913 0.754 0.535 0.376 0.366 0.636
0.70 90.804 88.526 1.930 2.375 �1.034 0.697 0.448 0.290 0.353 0.641
0.75 90.527 88.343 1.633 2.010 �1.147 0.636 0.351 0.194 0.329 0.643
0.80 90.220 88.057 1.375 1.693 �1.247 0.569 0.244 0.095 0.280 0.639
0.85 89.839 87.623 1.185 1.460 �1.326 0.491 0.141 0.023 0.192 0.626
0.90 89.329 87.041 1.084 1.336 �1.379 0.398 0.058 �0.002 0.080 0.602
0.95 88.684 86.342 1.065 1.313 �1.406 0.292 �0.007 0.003 �0.032 0.566
1.00 87.931 85.553 1.112 1.371 �1.414 0.175 �0.062 0.020 �0.138 0.522

Fig. 8. Pareto frontiers for E½YpðxÞ� � Var½bYpðxÞ� using NBI coupled with factor analysis.

Fig. 9. Pareto frontiers for FfE½YiðxÞ�g � FfVar½bY iðxÞ�g using NBI-FA method.
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solution corresponds to the narrowest 95% confidence intervals
with maximum possible removal rates for dye removal and
chemical demand oxygen (Y1 ¼ 90.5 ± 2.2 and Y2 ¼ 88.3 ± 2.7).
These optima were obtained at x* ¼ [7.9. 5.6 l min�1. 18.4 g h�1].
The previous discussion indicates that the search of optimal
conditions in a multiobjective optimization is not always a trivial
task. In contrast, most of the papers devoted to optimize the
wastewater treatment processes have been adopting just RSM
graphical solutions, as contour or surface plots, without any opti-
mization routine. Just a small amount of them has adopted opti-
mization algorithms like the Desirability method (Montgomery,
2009), such as Asfaram et al. (2015d) that applied RSM and desir-
ability for the optimization of simultaneous ultrasound-assisted
ternary adsorption of dyes onto copper-doped zinc sulfide nano-
particles loaded on activated carbon, Gomes et al. (2016) that
employed desirability in the optimization of tannery-dye-
containing effluent treatment with leather shaving or K€orbahti
(2007) who applied RSM and desirability method in the optimi-
zation of electrochemical treatment of textile dye wastewater. So,
for sake of comparison with traditional RSM optimization routines,
it was developed a similar analysis.

Fig. 15 presents the contour plots for Y1 (a, b and c) and Y2 (d, e
and f) for a specific hold condition [1.000; 1.000; 0.500] adopted
within the most of Pareto sets used in this research (WS, GCM, NBI,
NBI-FA). In a first inspection, it is possible to note that it is not so
easy to find a suitable solution that meets all the objectives and
constraints adopted in this work since the contour plots reveals the



Fig. 10. Predictions and 95% C.I. bounds of Y1 and Y2 obtained from NBI-FA method.

Fig. 11. Pareto Frontiers for Y1 and Y2 obtained with different methods.
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behavior of each characteristic separately. However, even consid-
ering the entire set of objective functions and constraints, the
overlaid contour plot of Fig.16 is just able to shown a feasible region
but is unable to define the best compromise solution within this
space.

Otherwise, desirability method was also applied for comparison
(Fig. 17). It is possible to note that this method is a feasible alter-
native since it is present in the most of commercial and statistical
software, like Minitab 17©. Although desirability remains as a
feasible alternative, the setup of its parameters is a challenge, since
for each setup it will be created a new solution. Fig. 17 (a),(b), (c)
and (d) show how the importance of each objective function may



Fig. 12. Pareto Frontiers for Y1 and Y2 obtained with different methods.

Fig. 13. Pareto Frontiers for Y1(x) and Var[Y1(x)] obtained with NBI method.
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change the optimization results. So, it is necessary to run desir-
ability several times, for different set of weights (or importance) to
achieve the best compromise solution. This iteratively task is the
same procedure conducted in the case of Pareto frontiers building.
Therefore, even using an algorithm like desirability, a technical
issue remains: how to adjust the weights to obtain the best
compromise solution.
7.4. Power and sample size for confirmation runs

The calculation of sample size necessary to confirm the opti-
mization results was done to accomplish with the following de-
mands: first, to test the significant differences between a specific
point in the Pareto Frontier and the mean of the confirmation runs
in the same optimum using a one sample t hypothesis test; second,



Fig. 14. Fuzzy decision maker comparisons.

Fig. 15. Contour plots for Y1 (a. b and c) and Y2 (d. e and f). Hold values: [1.000; 1.000; 0.500].
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to test if there is a significant difference between two far points in
the frontier (w1 ¼15% and w2 ¼ 85%) employing a 2-sample t-test.
For the variances, the strategy is similar. This procedure was
employed for Y1 and Y2, respectively. Projecting the sample size by
the worst scenario, it was chosen differences between 1 up to 1.5%,
with a standard deviation of 1.2%. Analogously, to test if there is a
significant difference between two variances the sample size was
calculated using different variance ratios (var1/var2), representing
how many times a variance in a first condition (w ¼ 15%) is larger
than in a second one (w¼ 85%). Based on the Pareto frontier results,
the larger variance ratios were 6.3, 5.0 and 4.0. In the three cases, a
significance level of a ¼ 5% and a power of 80% were used. For all
the tests, a sample size of n ¼ 20 was a suitable choice.

Table 9 presents a summary of the main results, showing the
optimum in each condition, the mean of confirmation runs for Y1
and Y2, the respective fitted values and upper and lower bounds for



Fig. 16. Overlaid Contour plots.
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95% confidence intervals. It can be noted that all sample means fall
within the confidence intervals for Y1 and Y2, proving that the so-
lutions are really feasible. According to one sample t-test results
shown in Fig. 18 (b), it can be accepted the null hypothesis that the
mean of confirmation runs for Y1(x) in the setup with weight of
w ¼ 15% is equal to the fitted value (the respective result on the
Pareto frontier). The same conclusion may be drawn from the one
sample t-test for Y2(x) (Fig. 19), since both p-values are lesser than
a ¼ 5%.

When comparing the difference between the expected mean of
Y1(x) under the weights of 15 and 85% (Fig. 20), the null hypothesis
is rejected with p-value ¼ 0.000. Therefore, the Pareto solutions at
these two weights are statistically different. For the predicted
variances the results are similar. With p-value ¼ 0.927 it is possible
to accept the null hypothesis that the ratio between of variance of
Y1(x) at w ¼ 15% is at least three times larger than that obtained
with w ¼ 85%. With p-value ¼ 0.775, the same conclusions may be
drawn from two variances hypothesis test for variance of Y2(x) at
w ¼ 15% and w ¼ 85% (Fig. 21).

Summarizing, it is possible to conclude that setups with lower
prediction variances will also present lower means. This is in fact
the essence of a trade-off between mean and variances into the
solution space. Since all confirmation runs and hypothesis tests
corroborated the optimization results, it is possible to affirm that
NBI-FA method is a suitable method for optimization of RSM
problems with correlated response data sets for mean and pre-
diction variance of wastewater treatment process.
7.5. Discussion

Industrial wastewater treatment is a major concern in many
countries nowadays. Wastewaters resulting from different pro-
cesses have specific characteristics (Colla et al., 2016). As stated by
Abidi et al. (2015), the wastewater produced by textile industries is
colored and with high loading of inorganic salt and other chemical
additives, that represent an environmental danger. In addition, the
technologies used for the textile wastewater treatment require high
capital and operating costs. In this context, the optimization of this
kind of process can bring very significant results. According to Ji
et al. (2016), the optimization of treatment process is commonly
based on the quality of the effluent, wastewater discharge stan-
dards and quality requirements for wastewater reuse. Although this
study applied the NBI-FA method only for optimizing the dye
removal and chemical oxygen demand removal, it could also be
applied for other process characteristics and, even better, it could
be applied for other processes, not only wastewater treatment.

The biological and biochemical processes that take place inside a
wastewater treatment plant are strongly interrelated and involve a
great number of variables, which turns the control of such plants a
very complex task (Santín et al., 2016). The considerable difficulty
in maintaining a sewage treatment plant at a steady state justifies
the need of models that can simultaneously correct the variance
and the means of flows faster and accurately while maintaining the
final disposal condition at accepted levels, usually determined by
national or regional policies of wastewater disposal and reuse
(Corominas et al., 2013; Meneses et al., 2015; Pintilie et al., 2016). In
the context of plant control, as proved in the previous sections, the
NBI-FA method is capable of generating minimum prediction var-
iances for the wastewater treatment, which was the main objective
of this study. Minimum variances are very important to plan and
control industrial wastewater treatments, since it promotes a more
stable condition.

A more detailed analysis of the results was made so that the
influence of all the three variables in the results found in the
optimization could be discussed. The significative terms for color
removal and COD removal models are presented in Tables 3 and 4. It
can be noted that only the air flow is a non-significative parameter,
although it presents significative interactions with the two other
parameters tested.

For this process it was observed that any variation in the pH can
directly influence its kinetic and thermodynamic. Taking into ac-
count the entire Pareto set provided in Table 6 (in uncoded values,
according to Table 1), it is possible to evaluate the color removal
behavior due to the change of the PH of the medium. As it can be
seen in Fig. 22 (a), the scatterplot of color removal versus pH can be
divided in two distinct regions: a) an exponential behavior of color



Fig. 17. Optimization using Desirability function.

Table 9
Summary of confirmation runs.

Y(x) x1* x2* x3* Y*(x) LB UB Sample mean

Y1(x) 15% 1.124 0.939 0.371 93.427 89.804 97.050 92.563
Y1(x) 85% 0.141 0.023 0.192 89.839 87.615 92.063 89.760
Y2(x) 15% 1.124 0.939 0.371 88.573 84.124 93.021 88.217
Y2(x) 85% 0.141 0.023 0.192 87.623 84.893 90.353 87.153
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removal from pH of 7.0e7.5 and b) an almost linear behavior for the
remaining points.

Within the class of advanced oxidation processes, any increase
in pH during the ozonolysis process favors the degradation of the
organic load in the solution, which comes from the methyl orange
compound solubilized in distilled water. In this process, there is a
significant formation of hydroxyl radicals ðHO	 Þ, through an indi-
rect reaction. However, the high molecular concentration of ozone
present in solution may favor the direct reaction (Gottschalk et al.,
2010).

The reaction for the degradation of methyl orange can be
generalized as shown in Eq. (31).

Aþ O3/CO2 þ H2O (31)

where the term A represents the methyl orange solution. In kinetic
terms, Eq. (31) can be written in differential form as:



Fig. 18. Y1:Confirmation runs (a). One-sample t for w ¼ 15% (b) and w ¼ 85% (c).
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Fig. 19. Y1: 2-Sample t and 2-variances hypothesis tests for w ¼ 15% and w ¼ 85%.



Fig. 20. Y2: Confirmation runs (a). One-sample t for w ¼ 15% (b) and w ¼ 85% (c).



Fig. 21. Y2: 2-Sample t and 2-variances hypothesis tests for w ¼ 15% and w ¼ 85%.



Fig. 22. Influence of pH, air flow and ozone dosage on color and COD removal.
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dCA
dt

¼ kCA½O3� (32)

Consequently, for elevated ozone concentrations, the percent-
age of color removal is reduced mainly due to the ozone con-
sumption (direct reaction). Therefore, the reaction presents
second-order kinetic, which means that the concentration of
methyl orange solution varies exponentially and explains the slight
bend in the interval of pH ranging from 7.0 to 7.4.

On the other hand, for a more alkaline pH, the concentration of
O3 in solution decreases, since it is converted into hydroxyl radicals.
In this context, the ozone concentration in solution remains prac-
tically constant. Thus, it is possible to rewrite Eq. (32). In terms of a
rate constant composed of the product of the rate constant k and
the ozone concentration in the medium, as in Eq. (33), which
characterizes a kinetically pseudo first order reaction.

dCA
dt

¼ k0CA c k$½O3� ¼ k0 (33)

This approach can only be done since the rate constant k varies
depending on the reaction temperature, which is characterized as
constant throughout the experiments. The pseudo first order re-
action explains the linear behavior observed in the second scenario
of Fig. 22 (a), where, at higher pH, the color removal is linearly
depending on the pH variation.

When the effect of the airflow in the color removal is analyzed,
there is an effect of gas-to-liquid mass transfer, which can be
described by Fick's law:
J ¼ �DA
vCA
vx

(34)

where J is the diffusion in the liquid in [mass].[time]�1.[surface]�1,

D is the diffusion coefficient [surface]. [Time] �1 and vCA
vx is the

concentration variation along a column vx height. The ozone mass
transfer is directly related to the reactor height in addition to the
form of diffusion of this gas in the reaction medium. When the gas
bubbles are considered macro bubbles in an open system at at-
mospheric pressure, there is a decrease of gas diffusion in the so-
lution due to the decrease of the density of bubbles within the
reactor, which can be considerably improved when the bubbles
diameters are increased by mechanical, physical or chemical sys-
tems. In this study, bubbles were produced by physical process,
consisting of a ceramic sphere, that generates a mixture of macro
andmicro bubbles and depends on the gas flow rate used. The non-
significance of the airflow in this work can be explained due to the
small height of the reactor column is not sufficient to compare the
efficiency of mass transfer in color reduction.

It is also possible to evaluate the color removal behavior due to
the ozone dosage. The ozone dosage depends on the power of the
ozone generator and. according to Tang et al. (2009), variations in
this power can affect the production of hydroxyl radicals and,
consequently, the color removal. In order to understand the rela-
tionship between the power of the ozone generator and the ozone
dosage, a calibration curve was built by applying an iodometric
method in accordance with Standard Methods for the Examination
of Water and Wastewater (American Public Health Association
et al., 2012). This method consists in determining the



Fig. 23. Calibration curve for the ozone generator.
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concentration of ozone gas by titration of a solution of potassium
iodide in acidic medium of a sodium thiosulfate solution. The ozone
generator power was controlled via a potentiometer with a per-
centage scale from 0 to 100%, corresponding to 0 and 220 W,
respectively, that were determined based on the ozone dosages
produced by the iodometric method.With the data collected, it was
possible to build a calibration curve as shown in Fig. 23.

When a slight increase in the power of ozone generator occurs,
the production of hydroxyl radicals increases as the ozone pro-
duction is intensified. However, when the power is about 60W, the
production of hydroxyl radicals starts to decrease and, when the
power is close to 127 W, the production of hydroxyl radical is
practically undetectable (Tang et al., 2009). The Scatterplot in
Fig. 22 (c) shows the behavior of color removal as a function of the
ozone dosage, where it is also possible to notice two different
stages. In the first part of the curve (with ozone dosage from 17.0 to
18.4), there is a gradual increase in the power of the generator and,
consequently, the variation of color removal is due to the small but
efficient ozone generation, explaining the large intervals in the
graphic. This spacing decreases with the power increasing and it is
possible to notice that values marginally above the optimal
(18.4 g h�1) does not necessarily causes a greater color removal.

The same analysis done for color removal can be performed for
the COD removal using the data from the Pareto front (Table 6). The
COD removal is chemically related to the removal of color, since the
COD is only removed at an azo compound (in this case, methyl
orange) if there is the splitting of the azo bond, which leads to color
removal. Therefore, Fig. 22 (d) shows the relationship between pH
and COD removal, where it can be seen a tendency of higher COD
removal for pH ranging from 8.0 to 9.0. According to the optimi-
zation results, for w ¼ 75%, this value approaches to 8.0. At this
value of pH, as previously discussed, the indirect reaction is favored,
leading to the formation of hydroxyl radicals that promotes the
degradation of COD.

The relationship of O3 dosage with COD removal has also a
similar behavior, since its diffusion is directly linked to pH varia-
tions in the reactionmedium, which can be seen in Fig. 22 (f). In this
context the optimal ozone dosage can be detected around of
18.4 g h�1, which corresponds to approximately 70% of the gener-
ator power, that is a range value also referenced in Tang et al.
(2009).

7.6. Advantages and drawbacks of NBI-FA method

The theoretical results and the confirmation runs showed that
NBI-FA is a feasible proposal to treat large scale multiobjective
problems presenting some degree of correlation among several
responses and promoting the reduction in prediction error of the
optima. As could be seen in the literature review, a large deal of
cases employing response surface modelling of wastewater treat-
ments presented such characteristics. Analyzing the numerical re-
sults, it is possible to state the following advantages and drawbacks
of NBI-FA method:

a) Advantages:
� NBI-FA method is capable of reducing the number of objective
functions in a multiobjective optimization problem using the
correlation or variance-covariance matrix of original
responses;

� The use of rotated factor scores allows to obtain a Pareto
frontier with uncorrelated axes;

� The method is able to build the frontier without inverting the
original correlation among the original responses;

� Allows to obtain equispaced frontiers and solutions;
� Promotes a better exploitation of solution space;
� When treating with E[f(x)] and Var[f(x)], NBI-FA is able to find
optimal solutions with the narrowest confidence intervals for
the predictions.

b) Drawbacks
� Requires a larger number of orthogonal transformations,
represented by the principal components and factor scores;

� The method only reduces the number of subproblems if the
method is only able to find solutions if there are significant
correlations between objective functions;

� Sometimes the sense of optimization of the components or
factor scores will not be compatible with the direction of
optimization of the original objective functions. In this case,
some further transformation may be necessary, like signal-to-
noise ratios or multivariate mean square error (Lopes et al.,
2016; Costa et al., 2016).

8. Conclusions

Response surface methodology has been broadly used in the
modelling and optimization of wastewater treatments. However,
since there is no guarantee that convexity of the response surface
models will be compatible with the desired direction of optimiza-
tion, in many times the optimal setup defined for the wastewater
treatment will not have a good predictability. So, taking this fact
into consideration, this paper presented a bi-objective formulation
for NBI extending its application to those problems related to ex-
pected values and prediction variances of response surfaces used to
model and optimize the performance indexes for wastewater
treatment. Using rotated factor scores of the original means and
variances, the NBI-FA approach was capable of generate a wide set
of feasible solutions. The main conclusions of this study may be
summarized as follows:

� The rotated factor scores represented correctly the groups of
means and variances in response surfaces problems;

� The varimax rotation produced factor scores with more similar
weights (eigenvalues) than the unrotated one, which is impor-
tant when the researcher desires to build a Pareto Frontier.
Similar eigenvalues may describe independent and equally
important axes for the Pareto Frontier;

� The NBI-FA method was capable of generate narrow confidence
intervals for the prediction with satisfactory values for the
wastewater treatment;

� Considering that the Pareto Frontier of four objective functions
(two means and two variances) would request the perform of
1771 subproblems in the traditional NBI method, the same
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problem was solved solving only 21 subproblems with in-
crements of 5% with NBI-FA method;

� The maximum dye removal of Methyl Orange achieved when
the response was optimized individually was 94.1% ± 4.3 and it
was obtained at an optima point equals to x*¼ [9.8; 6.8 l min�1;
17.8 g h�1];

� The maximum oxygen demand removal obtained when this
response was optimized individually was 88.4% ± 3.3 and this
removal rate was obtained at an optima point equals to
x* ¼ [8.4; 6.5 l.min-1; 19.26 g h�1].

� This individual optimum for these two response have presented
the largest 95% prediction confidence intervals;

� Using the individual maximization of the response surface of the
second rotated factor score (which represents both color and
COD removal), the maximum dye removal of Methyl Orange
achieved was 94.1% ± 4.3 and the maximum oxygen demand
removal obtained when this response was optimized individu-
ally was 88.4% ± 5.3, obtained at an optima point equals to
x* ¼ [9.5; 7.1 l min�1; 18.4 g h�1];

� Based on the fuzzy membership of Pareto set, the narrowest 95%
confidence intervals for dye removal and COD removal were,
respectively, obtained by the convex and equispaced Pareto
Frontier as Y1 ¼ 90.5 ± 2.2 and Y2 ¼ 88.3 ± 2.7 and it was pro-
duced by optimum [7.9. 5.6 l min�1. 18.4 g h�1];

� These values are compatible with the process kinetic and the
respective thermodynamic;

� Fuzzy membership criterion was important to select the best
compromise Solution in the Pareto Set;

� Compared toweighted sums and global criterion method, it was
possible to verify that only NBI was able to generate convex and
equispaced Pareto frontiers;

� Besides, the traditional multiobjective methods did not respect
the original variance-covariance structure, inverting the corre-
lation of the original responses.

� Only NBI-FA method was capable of to generate equispaced
Pareto frontiers with the same signal to the correlation between
color and COD removals;

� Confirmation runs corroborated the good adequacy of present
approach. Revealing very suitable values for removal rates with
minimum prediction variances. These results are very important
to plan and control industrial wastewater treatments, because
promotes a more stable and optimal condition;

� Although these results are relative to the wastewater treatment,
NBI-FAmethod could be extended for others processes that uses
RSM with correlated responses, also presenting conflict be-
tween the optimum and the prediction variance of the several
responses of interest.
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