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The present work offers some contributions to the area of surface roughness modeling by Artificial
Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a
Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface
Roughness (Ra). The tuning method is expressed in the format of an algorithm employing two techniques
from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP).
Datasets retrieved from literature are employed to form training and test data sets for the ANN. The
proposed tuning method leads to significant reduction of roughness prediction errors in machining
operations in comparison to techniques currently used. It constitutes an effective option for the sys-
tematic design models based on ANN for prediction of surface roughness, filling the gap reported in the
literature on this subject.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

As newcomers to the use of Artificial Neural Networks (ANN),
researchers on the field of manufacturing started to explore ways
to apply networks to control or to foresee critical product quality
features, and to optimize multiple objective production processes.
The growing number of papers published during the past decade
testifies this interest.

Machining processes, for example, generates surfaces or parts
through removal of material. Production rate, cost, and product
quality are conflicting objectives in this kind of process, posing
additional challenges to its planning and optimization [1,2]. One
feature particularly difficult to control in machined products is the
surface roughness, a widely used index of product quality and a
technical requirement for machined parts [3]. It affects properties
such as fatigue behavior, corrosion resistance, friction, wear, light
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reflection, heat transmission, lubrication, electrical conductivity
and coating [4,5].

The ability to accurately control surface quality can reduce
machining costs by lessening the rework activities. It means that
this is not just a defying issue, but also an area of research interest.
The surface roughness cannot be controlled as accurately [6]
because it is influenced by many variables like steel properties,
tool material and geometry, vibration of cutting tool, cutting
speed, feed, depth of cut, lubricant, and others [7].

Although online roughness control applications are found in
literature, a more common approach is the application of ANNs to
offline control based on process parameters. Off-line quality
techniques are considered an effective approach to improve pro-
duct quality at a relatively low cost [8]. A survey on practical
efforts for network topology optimization reveals a drive towards
parameter optimization. Jiménez et al. [9], for example, used
Focused Grid Search (FGS) techniques for classification problems.

Despite the enthusiasm of using ANN for roughness control, the
results obtained are mixed: in many cases, authors deem networks
performance as equal or even worse in comparison to other mod-
eling techniques [3,10,11]. However, a close examination on litera-
ture reveals some issues such as basics of neurocomputing being
disregarded in many works. A broad review [12] found that in more
focused grid search for neural network parameter optimization,
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than 40% of papers dealing with surface roughness controlled by
ANNs, networks are designed by trial and error and in less than 10%
any effort to optimize network topologies could be positively
identified. This paper proposes then a method for tuning optimized
networks of Multi-Layer Perceptron (MLP) architecture applied here
for Average Surface Roughness (Ra) control in machining processes.
By combining two distinct techniques, Design of Experiments (DOE)
and Focused Grid Search (FGS), this work manages to establish
optimization decisions based on solid statistical criteria. It is inno-
vative because of the sequential use of DOE arrangements for
finding optimal model parameters. DOE is an applied statistical
methodology whose use allows to plan experiments capable of
generating appropriate data for an efficient statistical analysis,
resulting in valid and objective conclusions [13].

The strategy adopted consists in the use of DOE arrangements
to search for network configurations that benefits output control.
This method addresses problems found with previous optimiza-
tion attempts: (1) It imposes no restriction on the outer search
limits; (2) It avoids the use of large intervals between levels of
design factors adopted in experimental planning; (3) It addresses
the simultaneous optimization of the selected design parameters;
(4) It takes into consideration the effects of interaction among
design factor levels; and (5) As an algorithm, it proposes a sys-
tematic design method for ANN practical use. The last one is
pointed as a limiter and as a disadvantage in many works [14–17].

This paper is then organized as follows. Section 2 briefly
reviews concepts of machining, surface roughness and the use of
DOE for ANN optimization. Section 3 explains the work's reor-
ientation toward Evolutionary Operations (EVOP). Section 4 pre-
sents the optimization method algorithm for ANN tuning in
details. Section 5 shows the experimental strategy, and Section 6
approaches the two works selected for comparison. Section 7
shows and compares the results of the optimization method to the
results of the works dataset were extracted for, and to the results
of a software package intended to optimize ANN architectures.
Conclusions and suggestions for further research are then pre-
sented in Section 8.
2. Background and literature review

Machining is a process that generates surfaces through removal
of material, conferring form and dimension to a part. Turning is
the most common machining operation [18], being characterized
by simultaneous and continuous movement of part and tool.
Turning is controlled by its movements, which are: feed, depth of
cut and cutting speed. One of the main quality features resulting
frommachining process is the surface roughness, which can define
functional behaviors of a part such as fatigue life, wear patterns,
lubricant retention, or resistance to corrosion [10,19,20]. It is
linked to machine tool errors, workpiece deformation, vibration,
workpiece material inhomogenities, cutting edges shape and
condition, chip formation, cutting parameters, and physicochem-
ical mechanisms acting on workpiece grain and lattice structures
[7]. As pointed out, it plays an important role in determining the
quality of a machined product [21,22].

Roughness is then an indicator of process performance and
must be controlled within proper limits for particular machining
operations [23]. The process-dependent nature of roughness for-
mation, along with many uncontrollable factors, makes difficult to
keep it between desirable limits, i.e. to control it [7,19]. Operators
use their own experience and machining guidelines in order to
achieve the best possible surface finish [24].

Among the parameters to measure surface roughness, the most
commonly used is Roughness Average (Ra). It is the arithmetic
average of the absolute value of the heights of roughness
Please cite this article as: F.J. Pontes, et al., Design of experiments and
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irregularities from the mean value measured [25]. For discrete
measurement, Ra can be defined as in Eq. (1) [26].

Ra ¼
1
n

Xn

i ¼ 1

jyi j ð1Þ

the roughness average (Ra) is typically measured in micrometers
(μm), n is the number of samples in a given length, and |yi| stands
for the absolute measured values of the peak and valley in relation
to the center line average. According to international standards
[27], machining processes can achieve roughness values ranging
from 0.025 μm to 50 μm.

Efforts to model roughness involve analytical, experimental
and AI techniques [28]. Theoretical and empirical models, how-
ever, suffer from a number of problems. Theoretical models take
no account of imperfections in the real process, such as tool
vibration or chip adhesion [20]. Empirical models have their
application limited to very specific operational conditions. The
experience in both cases is then poor, as stated in many works
[29,30].

The use of ANNs in machining processes has been encouraged
in a considerable number of papers. Authors sustain that ANNs are
a good alternative to conventional empirical modeling based on
linear regressions for surface roughness modeling [10], also
maintain that neural networks are able to capture the turning
characteristic of non-linearity [24]. In hard turning operations,
some authors approaches the difficulty of generating explicit
analytical models with the complex relationship among the
parameters involved and, according to them, ANN pose a suitable
and practical option for modeling [31].

There is no consensus, however, on the experience with ANN
for roughness modeling. Some authors point to the lack of sys-
tematic design methods as a disadvantage [14]. Others claim that
finding a good ANN architecture requires several modeling
attempts, making it a time consuming activity [15,16]. Researchers
also testify the need of large amounts of data for training and
validation as restrictions to the practical application of ANN in
machining processes [32].

The most popular approaches for ANN design are empirical
search optimization (trial and error), pruning and constructive
approach [33]. Trial and error is common practice in most works
on the field of intelligent systems [17]. In more than 40% of the
papers using ANN, network topologies are explicitly defined by
trial and error; Clear optimization efforts are detected in less than
10% [12]. The application of statistics for network topology opti-
mization is not widespread in literature. The few examples found
shows that the full potential of this subject is not uncovered yet.
This factor could contribute to such a mixed view of ANNs abilities
controlling model roughness.

DOE technique is based on the concept of simultaneous varia-
tion of factors levels, in order to build forecasting models for
relevant outputs [13]. An additional advantage is that DOE prin-
ciples can be implemented in a well-defined and relatively low
number of experiments [30]. It is one of the most important
methodologies for researchers dealing with experiments in prac-
tical applications and its tools are incorporated in many statistical
software packages that ease calculation and interpretation of
results [34].

A DOE application for ANN optimization in machining process
can be found in [31]. The authors employed a DOE arrangement
called Taguchi to select the inputs for roughness prediction in CNC
face milling process. In [35], the development of roughness pre-
diction model for polymer blends machining using MLP trained by
back-propagation is also proposed employing Taguchi. Besides
roughness prediction, some DOE applications for network opti-
mization can be found such as tool wear [36] or thickness
focused grid search for neural network parameter optimization,
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prediction [37], robust design [38], assembly sequence planning
[39], neuro-fuzzy systems [40], time series forecasting [41], elec-
tricity spot simulation [42], among many others.

The use of DOE is not widely spread in simulation as it should
be due to reasons such as the lack of knowledge about the
methods, the lack of access to DOE research and the misconcep-
tion that DOE is applicable only to real-world experimentation
rather than for simulation and numerical experimentation [43].
DOE is also a useful and necessary part of complex simulation
analysis. The DOE-simulation concept can be extended to an ANN
design when the process is defined as the network parameters
initialization.
3. Work reorientation using Focused EVOP optimization

The initial goal of this work was to conduct an exploratory
experiment to identify the most influential factors for the perfor-
mance of MLP networks and then apply the Response Surface
Methodology (RSM) to search for optimal network topologies.
However, unsatisfactory results were obtained for the Steepest
Descent and Central Composite Design phases of RSM. Those
results testify to the complexity of MLP error surfaces, already
known in literature [43], and disqualified RSM as an optimization
approach.
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Fig. 1. Flowchart of the proposed algorithm
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The work was then re-oriented towards the use of Evolutionary
Operations (EVOP), a DOE technique, in conjunction with Focused
Grid Search (FGS). EVOP was intended from industrial processes
optimization [44]. The basic concept is the successive application
of DOE arrangements, and the displacement of the operational
point to the optimal region, based on the results of statistical
analysis. EVOP analysis makes no previous assumption on the
nature of the surface being modeled, what made it suitable for the
optimization.

Fig. 1 shows the resulting algorithm as a flow chart that sum-
marizes the activities carried out for optimizing the ANN para-
meters, i.e. the ANN architecture. The proposed steps for the
implementation of a Multi-phase EVOP are detailed in Section 4.
The five quantitative factors subjected to optimization (H1, H2, E1,
LR, and E2) are summarized in Table 1 and the seven qualitative
factors set out before the optimization (P1, P2, OF, PU, PI, W1, and
W2) are in Table 2.
4. Details on the optimization method

As shown in Fig. 1, the proposed method initiates by estab-
lishing the best settings for the qualitative design factors. It is
based on the results of an exploratory experiment employing a
Taguchi array [45] to identify levels of those factors that would
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Table 1
Quantitative design factors subject to optimization.

Factor code Factor description

H1 Number of neurons hidden layer 1
H2 Number of neurons hidden layer 2
E1 Number of training epochs phase 1
LR Learning rate training phase 1
E2 Number of training epochs training phase 2

Table 2
Qualitative design factors set out.

Factor
code

Factor description Option set

P1 Training algorithm phase 1 Back-Propagation algorithm
P2 Training algorithm phase 2 Conjugate Gradient algorithm
OF Output Activation Function Logistic Sigmoid
PU Pruning of output neurons Pruning of weights smaller than

0.05
PI Pruning of inputs No pruning
W1 Weights decay regularization

phase 1
No regularization

W2 Weights decay regularization
phase 2

No regularization
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benefit the predictive ability of the network. A mixed L16 Taguchi
array was employed based on [41].

Another essential step is the definition and interpretation of
model outputs [46]. All possible performances of a network form a
distribution of predictions due to random effects. The design goals
then change from find networks ‘with the smallest error averages'
to ‘capable of achieving minimal errors’, or even ‘to maximize the
probability of finding networks capable of achieving minimal
errors’. This subject is studied at the statistical research area of
Extreme Distributions, in order to model the probability of
extreme events.

In order to have a statistical estimate of the network perfor-
mance, it is necessary to collect a significant sample of predictions.
It is also important to express ANN model accuracy in statistical
terms, instead of absolute error values. Adopting the Extreme
Distribution concept, it is not the mean performance of a network
topology that counts, but the probability of a network model to
achieve an error of X% or less in the task proposed, when inde-
pendently trained and tested over a given dataset for a number
of times.

To meet with such statement, the process output for DOE was
defined by the independent repetition of the sequence “training-
selection-validation” of each network topology for 100 times. The
variable to be minimized through the use of DOE was defined as
the smallest possible Mean Absolute Error (MAE) value for pre-
diction (in percentage) for which there is a 0.1 cumulative prob-
ability in the population of network predictions. In practice, the
output variable was calculated as the average absolute errors of
the bottom decile of the results obtained from each replica and
referenced by MAE-DI%.

Once qualitative factors and output goals were defined, the
optimization process of quantitative factors is initiated based in a
multi-phase EVOP. It consists in an iterative algorithm beginning
with broad differences between factor levels until it comes to a
point where it shows no improvement. Then, a new phase is
initiated, focusing on the best configuration of the previous phase
and reducing the intervals to a fraction of the previous one. The
phases continue up to a point where no factor is deemed statis-
tically significant to network performance, or up to a point that the
designer deems to be satisfactory. The next section shows the
Please cite this article as: F.J. Pontes, et al., Design of experiments and
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algorithm main routine to be implemented concerning the quan-
titative factors for ANN tuning.

4.1. Multi-phase EVOP main routine

The initial step is the initialization of variables. The outer loop
corresponds to phases. Throughout each phase, intervals between
factor levels remain constant. The inner loop corresponds to cycles
within each phase, during which the center of experimental array
moves toward a network configurations with minimal error.

On each cycle, an experimental array is assembled, performed
and analyzed. If any main factor or interaction is considered to be
statistically significant, the configuration is stored. It is compared
to the best performance so far. In case of improvement, the net-
work configuration of the cycle replaces the configuration pre-
viously pointed as the best one. The center point of the array
moves toward the newly optimized network configuration and
another cycle begins, with the experimental setup built around the
new center point.

Cycles are executed up to the point no statistical improvement
is detected or until the center point established for the next cycle
corresponds to a point already employed as center point in the
same phase, thus marking the phase end. Intervals between factor
levels are then reduced, history of central points for the current
phase is reset and another phase begins, with reduced intervals
between the factor levels.

Phases are conducted up to the iteration number defined by
user, or in case the statistic test for analysis of variance (ANOVA)
performed in a given cycle indicates no factor is statistically sig-
nificant for the reduction of network error. The best network
configuration at the end is considered to be the best neural model
for roughness control and its constructive and statistical para-
meters are stored for model characterization.

The main routine of the proposed algorithm for quantitative
factors optimization is described as a pseudocode in Fig. 2. This
pseudocode was implemented at the software Statistica in order to
achieve this works results, but could be transcribed in other lan-
guages such as Matlab, R, C, Cþþ , among others.

4.2. Establishment of initial values

At this work, the initial center point and initial intervals
between experimental factor levels were defined as shown in
Table 3. These values were established during exploratory
experiments, based on fast convergence, amplitude of parameter
search coverage and experimental resolution. After each phase, the
intervals were reduced by fractions of 0.5.

4.3. Establishment of next center point

After the end of a cycle, the new center point shall be deter-
mined as specified on the pseudocode shown in Fig. 3. This algo-
rithm states that levels of a factor should be reduced or increased
as specified by the results of an ANOVA test. After the end of a
phase, the intervals between factors levels are reduced and the
cycle continues until the point no statistical improvement is
detected.
5. Experimental strategy

Several planned experiments provide the factors levels and
thus the ‘direction’ to the following one. The large number of
independent repetitions was made possible due to the use of
computational routines to conduct experimental cycles and to
collect data. In order to reinforce research quality,
focused grid search for neural network parameter optimization,
61i

http://dx.doi.org/10.1016/j.neucom.2015.12.061
http://dx.doi.org/10.1016/j.neucom.2015.12.061
http://dx.doi.org/10.1016/j.neucom.2015.12.061


Fig. 2. Pseudocode of the proposed algorithm main routine.
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recommendations set from fields of neurocomputing [47,48] and
DOE [13,49] were carefully considered. also, some recommenda-
tions for statistical validation were observed [50].

The experimental plan employed for Focused EVOP is a full
factorial composed of five factors in two levels, with a central
point. The DOE was executed in two replicates for each treatment
and for the central point. Each replicate was the independent
Please cite this article as: F.J. Pontes, et al., Design of experiments and
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repetition for 100 times of the sequence “training-selection-test-
ing” for each network configuration (treatment). Factor levels were
indicated by the convention �1, 0 and þ1, which represent
inferior, central and superior, respectively.

Experiments were conducted for this work using the software
Statisticas. A system of scripts and batch files was developed
allowing automated and independent repetition of tests on each
focused grid search for neural network parameter optimization,
61i

http://dx.doi.org/10.1016/j.neucom.2015.12.061
http://dx.doi.org/10.1016/j.neucom.2015.12.061
http://dx.doi.org/10.1016/j.neucom.2015.12.061


F.J. Pontes et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
network topology. Scripts were also used to perform complete
experimental arrangements, greatly increasing productivity and
thereby enabling timely coverage of the vast domain of the inde-
pendent variables investigated during the project.

Statistical analysis was performed using the software Minitabs.
After each cycle, results were formatted and the proper analysis
carried out. The ANOVA test results contain the relative weight of
each factor (whether main of interaction) on network perfor-
mance. The establishment of all input factors at levels that entails
the steepest minimization error indicates the optimal network
(and thus, the array center) for the next cycle.

Special care was taken in the analysis of residuals. Those must
be normal and uncorrelated [13,46]. Residuals of each experiment
were analyzed through the application of an Anderson-Darling
test, at a level of significance of 0.05. For experiments whose
residuals did not follow the normal distribution, outliers were
removed and the normality test repeated. Only after the normality
of residuals had been achieved, the statistical test ANOVA was
conducted. Effects were considered to be significant if their
resulting p-values measured below the level of significance
adopted, which was 0.05.
6. Selected works for comparing the surface roughness pre-
diction methods

The proposed method for ANN tuning was validated through its
application to datasets collected from selected papers on the
subject of roughness optimization. Statistical comparisons were
made between the results of the best network topology identified
by the proposed method, results of the original studies, and results
obtained by the best network topology identified by a specialist
computer package available at the software Statisticas.
Fig. 3. Pseudocode of the proposed algorith

Table 3
Initial values adopted for the quantitative factors to be optimized.

Factor Initial value

Number of neurons in hidden layer 1 (H1) 8
Number of neurons in the hidden layer 2 (H2) 8
Number of epochs training phase 1 (E1) 32
Learning rate training phase 1 (LR) 0.4
Number of epochs training phase 2 (E2) 64

Please cite this article as: F.J. Pontes, et al., Design of experiments and
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Those papers were chosen because they also aimed to build a
neural network applied for roughness prediction and they showed
the explicit data they used to do it. In order to make a fair com-
parison for the results, it was used in this paper the same division
of the data set that the authors of the original papers used: the
same amount for training, validation and tests.

The first paper selected (Case Study no. 1) was the work of
Sharma et al. [20], whose focus was the prediction of parameters
such as cutting forces and surface roughness in hard turning
process. The material specimens were composed of Adamite, with
measured hardness of 467 HV.

Roughness values measured during the experiments were
between 0.84 μm and 7.49 μm. The data collected was employed
to build an ANN model for surface roughness prediction, following
an author defined heuristic. The ANN input factors adopted in that
study are shown in Table 4. The output variable is the Average
Roughness (Ra) measured in micrometers (mm). The training set
was composed of 34 examples, being 30 for training and 4 cases
used for validation, randomly swapped on each training epoch.
The test set comprised 17 examples.

The second paper employed for validation (Case Study no. 2) is
the work of Sarkar et al. [51], which approaches a process of
Electric Discharge Machining (EDM) of an alloy of aluminum and
titanium. Hardness of the specimens measured is 148 HV. The goal
was to propose a new strategy for process optimization, identify-
ing an operation point of minimum roughness.

A neural network trained by back-propagation algorithm was
developed to model the machining process and then employed to
generate multidimensional models for identification of optimal
process parameters. The input factors used to predict surface
roughness are listed in Table 5. The output variable of the model is
also the Average Roughness (Ra) measured in micrometers (mm).
Roughness values measured during the experiments were
between 2.31 μm and 3.16 μm. The training set contains 18
examples (15 examples for training and 3 for validation) and the
test set contains 6 examples.
7. Proposed method application: results and comparisons to
previous works

This section presents the results obtained applying the method
proposed in this work for the two selected data set. The resulting
m to determine the new center point.

focused grid search for neural network parameter optimization,
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ANN performances are then compared to the ANN performances
proposed at the original works and to the ANN models identified
through IPS, an automated tool for optimizing ANN using the
software Statisticas.

It is important to emphasize that the results presented here
were obtained exclusively using the test set, i.e. not the data used
for training or validation. Results were first analyzed using the
software Minitabs: the traditional DOE approach for analyzing the
results of the proposed method can be seen in Figs. 4–6.

Fig. 4 illustrates the main effects caused on network perfor-
mance by changing levels of input factors. This figure shows, for
each experimental factor on the x-axis, the encoded values it
assumed on the experimental arrangement (�1, 0 or 1). The y-axis
displays the average values of the output obtained for the
experiments conducted with the array factor at the given level.

Fig. 5 illustrates the two-way interaction effects. Interactions
can be understood as amplification or inhibition of the effect of
varying a particular factor on the output due to the level assumed
by another factor. The ability to detect interactions between
Table 5
Input factors of dataset collected from Sarkar et al. [51].

Factor code Factor description Units

Ton Pulse on time ms
Toff Pulse off time ms
IP Peak current A
WT Wire tension g
SV Servo reference voltage V
FR Dielectric flow rate (discharge pressure) Kg/cm2

Fig. 4. Main effects plot (first optimizat

Table 4
Input factors of dataset collected from Sharma et al. [20].

Factor code Factor description Units

Vc Cutting speed m/min
f Feed mm/v
ap Depth of cut mm
AA Approaching angle °

Please cite this article as: F.J. Pontes, et al., Design of experiments and
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2015.12.0
factors is one of the strengths of DOE methodology. As for the
main effects, the significance of interaction effects is measured by
ANOVA. It is possible to visualize graphically the importance of an
interaction effect by comparing the relative slope of the lines. The
more significant the effect of an interaction the closer lines are to
perpendicular.

For experiments involving more than two factors, it is possible
to estimate effects of order greater than two. Fig. 6 shows the set
of significant effects for the example in question. The Pareto chart
indicates main and interaction effects considered statistically sig-
nificant by ANOVA. Effects crossing the line are considered to be
significant, at a significance level of 0.05. It may be noted that
some triple or even quadruple interaction effects are significant to
the performance of the network. Moreover, according to the
principle of hierarchy [13], the main effect of a factor must be
taken into account at the analysis if there is any significant inter-
action effect in which it is involved.
7.1. Results for Case Study no. 1

7.1.1. Initialization and development
Applying the proposed method for tuning a specific ANN for

the dataset from Case Study no. 1, a Maximum Number of Phases of
four was adopted. The Center Point and the Interval Between Factor
Levels were initialized according to the values specified on the
algorithm in Fig. 3.

The optimization process required the execution of nine cycles.
The first phase ended after the second cycle, when the analysis
pointed that the Center Point for next cycle was a set of factor
levels already used as a Center Point in the same phase. The second
phase ended after the fifth cycle, for the same reason. Third and
fourth phases ended after cycles 7 and 9, respectively, when
results pointed to no error reduction. Results obtained are dis-
played on Table 6.

Table 6 details the factors levels corresponding to centers of
factorial arrays executed every cycle. This table informs the com-
bination of factors identified at the end of each cycle, under col-
umns grouped as ‘Best configuration obtained in the cycle’.
ion cycle using dataset from [41]).
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Fig. 5. Two-way interaction effect plot (first optimization cycle using dataset from [41]).

Fig. 6. Pareto chart of standardized effects (first optimization cycle using dataset from [41]).
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Prediction performances achieved by that configuration are dis-
played under column ‘Output (MAE-DI%)’.

After the final cycle, the best network topology was the one
whose quantitative factors resulting from EVOP are detailed in
Table 7 and the qualitative factors resulting from Taguchi are
shown on Table 2. This ANN performance is summarized in
Table 8. The independent repetition of the sequence “initializa-
tion-training-test” for 100 times made it possible to obtain sta-
tistically significant data on model performance associated to the
ANN topology.

The optimal ANN model could generate Response Surfaces for
the roughness process being studied. Figs. 7 and 8 are examples of
Response Surfaces generated by the optimal ANN configuration.
Fig. 7 displays the response surface of network predictions for ap
(Depth of cut) versus AA (Approaching angle), keeping Vc (Cutting
speed) fixed at 90 [m/min] and f (Feed) fixed at 0.2[mm/turn]. Fig. 8
displays the response surface of network predictions for ap (Depth
Please cite this article as: F.J. Pontes, et al., Design of experiments and
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of cut) versus f (Feed), keeping AA (Approaching angle) fixed at 30
[°] and Vc (Cutting speed) fixed at 90 [m/min].

7.1.2. Comparing results from the proposed method and the original
work [20] used as Case Study no. 1

The performance of the best ANN tuning obtained through the
application of the proposed method was compared to that
achieved by the network topology adopted in the original work
where this data set was used. The error in both cases was com-
pared using a hypothesis test. A bilateral t-test for the null
hypothesis of equal average error between the ANNs at a sig-
nificance level of 0.05 was conducted. The value for the best net-
work identified in this work is equal to 12.797%, while the corre-
sponding value calculated for Case Study no. 1 is 72.108%.

The result was a p-value of 0.000, implying in a rejection of the
null hypothesis of equal means. Therefore there is a strong sta-
tistical evidence to state that the ANN performance obtained
through the proposed method is superior to that obtained at the
focused grid search for neural network parameter optimization,
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Table 6
Experimental array centers and best factor settings per cycle – proposed method application to dataset from Case Study no. 1.

Array center (natural units) Best configuration of the cycle (coded units) Output (MAE-DI%)

Phase Cycle H1 H2 E1 LR E2 H1 H2 E1 LR E2

1 1 8 8 32 0.400 64 1 �1 �1 1 �1 14.104
2 16 8 32 0.800 64 �1 �1 �1 �1 �1 13.718

2 3 8 8 32 0.400 64 1 �1 �1 �1 �1 14.805
4 12 4 16 0.200 32 1 �1 �1 �1 �1 14.198
5 16 4 16 0.200 32 �1 �1 �1 �1 �1 14.127

3 6 12 4 16 0.200 32 1 �1 �1 �1 �1 13.635
7 14 2 8 0.100 16 �1 �1 1 �1 �1 13.956

4 8 14 2 8 0.100 16 �1 �1 1 1 �1 12.797
9 13 1 12 0.150 8 1 �1 �1 �1 �1 13.513

Table 7
Best ANN topology for quantitative factors using dataset from Case Study no. 1.

Design factor Optimal factor level

Number of neurons hidden layer 1 13
Number of neurons hidden layer 2 1
Number of epochs training phase 1 12
Learning rate phase 1 0.150
Number of epochs training phase 2 8

Table 8
Performance of the best ANN topology for roughness prediction (Case Study no. 1).

Mean value Standard deviation Minimum value

Prediction error (MAE-
DI%)

34.299 15.230 10.470

Fig. 7. Response surface for best network topology (data set of Case Study no. 1,
Statisticas).

Fig. 8. Response surface for best network topology (data set of Case Study no. 1,
(Statisticas).

Fig. 9. Boxplot for t-test between best ANN topology and result from Case Study no.
1 with 95% t-confidence interval for the mean (Minitabs).
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original paper. Fig. 9 additionally displays the boxplot for the
outcome of this test. In this figure, ̅X represents the average of this
work output variable (MAE-DI%) and H0 represents the error from
the work used for comparison.

In addition to the statistical evidence, it could be observed that
the same configuration presented even better results in some
instances of the test. The overall best performance observed had
an error of 10.470%, what gives an indication of this work potential
for roughness control.
Please cite this article as: F.J. Pontes, et al., Design of experiments and
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7.1.3. Comparing results from the proposed method and a network
optimization tool using data set from Case Study no. 1

An additional comparison was made between the best MLP
network configuration obtained by the proposed method and an
optimized topology identified by an automated tool for network
optimization, the Statistica IPSs. The performance of the two
models on the prediction of surface roughness for the test cases
was compared using ANOVA. IPS was employed with extremely
elevated high end search limits (up to 100.000 network topologies
and up to 1000 neurons in hidden layers) in order to maximize the
focused grid search for neural network parameter optimization,
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probability of finding an optimal architecture tool. The output
(MAE-DI%) for the ANN proposed by the tool was equal to 14.170%.

Another ANOVA test was employed to compare the prediction
error of the two network configurations. The ANOVA result indi-
cates that, at a level of significance of 0.05, there is evidence of
statistical difference between the prediction errors of the network
configurations under comparison. The prediction error of the
network obtained through the method is smaller than that
obtained using the software package. The comparison is further
illustrated in Fig. 10, which displays a box-plot diagram of the
prediction error for the two network configurations. A clear dif-
ference can be observed between the ANN performances under
comparison.

7.2. Results for Case Study no. 2

7.2.1. Initialization and development
The same initialization values adopted for the previous case

were employed for Case Study no. 2. The optimization process
required the execution of eleven cycles. Phases ended after the
cycles 2, 5, 8 and 11, when results pointed to no error reduction.
Obtained results are displayed on Table 9.

Table 9 details the levels of factors corresponding to centers of
factorial arrays executed every cycle. This table informs the best
combination of factors identified at the end of each cycle, under
columns grouped as ‘Best configuration of the cycle’. Prediction
performances achieved by that configuration are displayed under
column ‘Output (MAE-DI%)’. After the final cycle, the best network
topology was the one whose quantitative factors, resulting from
EVOP, are detailed in Table 10 and Table 7 the qualitative factors,
Fig. 10. ANOVA Boxplot for comparison between the proposed method and Sta-
tistica IPSs using the data set of Case Study 1 (Minitabs).

Table 9
Experimental array centers and best factor settings per cycle – proposed method applic

Array center (natural units) Best confi

Phase Cycle H1 H2 E1 LR E2 H1

1 1 8 8 32 0.400 64 1
2 16 8 64 0.800 128 �1

2 3 16 8 64 0.800 128 1
4 20 4 48 0.600 96 1
5 24 4 64 0.800 128 1

3 6 24 4 64 0.800 128 1
7 26 2 72 0.700 112 �1
8 24 2 64 0.600 96 �1

4 9 24 2 64 0.600 96 �1
10 23 1 68 0.650 104 �1
11 22 1 64 0.700 112 �1
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resulting from Taguchi, are shown on Table 2. This ANN perfor-
mance is summarized in Table 11.

7.2.2. Comparing results from the proposed method and the original
work [51] used as Case Study no. 2

The performance of the best ANN configuration obtained
through the application of the proposed method was compared to
that achieved by the ANN topology used in the original work. As
for Case Study no. 1, errors were compared by means of a bilateral
t-test using the same parameters. The value for the proposed
method is equal to 3321% while the corresponding value calcu-
lated for Case Study no. 2 is equal to 4899%.

The resulting p-value was 0.000, implying the rejection of the
null hypothesis of equal means. Once again, there is strong sta-
tistical evidence in favor of the ANN configuration obtained
through the proposed optimization method. The boxplot for the
hypothesis test is illustrated in Fig. 11. In this figure, ̅X represents
the average of this work output error (MAE-DI%) while H0 repre-
sents the error from the original work. As observed for the first
case, the best ANN configuration presents even better results in
some instances of the test. The overall best performance observed
had an error of 1.399%.

7.2.3. Comparing results from the proposed method and a network
optimization tool using data set from Case Study no. 2

The comparison between the best MLP network configuration
obtained by the proposed method and an optimized network
topology identified by an automated tool for network optimiza-
tion, the Statistica IPSs, was repeated for Case Study no. 2. Their
ation to dataset from Case Study no. 2.

guration of the cycle (coded units) Output (MAE-DI%)

H2 E1 LR E2

�1 1 1 1 3.570
1 1 �1 �1 4.037

�1 �1 �1 �1 3.807
�1 1 1 1 3.707
�1 �1 �1 1 3.724
�1 1 �1 �1 3.877
�1 �1 �1 �1 3.321
�1 �1 �1 �1 3.697
�1 1 1 1 3.867
�1 �1 1 1 3.796
�1 1 1 �1 3.832

Table 10
Best ANN topology for roughness prediction using dataset from Case Study no. 2.

Design factor Optimal factor level

Number of neurons hidden layer 1 24
Number of neurons hidden layer 2 0
Number of epochs training phase 1 64
Learning rate phase 1 0.600
Number of epochs training phase 2 96

Table 11
Performance of the best ANN topology for roughness prediction (Case Study no. 2).

Mean value Standard deviation Minimum value

Prediction error (MAE-
DI%)

6.758 2.095 1.399
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Fig. 11. Boxplot for t-test between best ANN topology and result from Case Study
no. 2 with 95% t-confidence interval for the mean (Minitabs).

Fig. 12. ANOVA Boxplot for comparison between the proposed method and Sta-
tistica IPSs using the data set of Case Study 2 (Minitabs).
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performances were compared using ANOVA. As before, IPS was
employed with extremely elevated high end search limits (up to
100.000 network topologies and up to 1000 neurons in hidden
layers) in order to maximize the probability of finding an optimal
architecture tool. The output (MAE-DI%) for the ANN proposed by
the tool was equal to 6.189%.

The prediction error of ANN obtained through the proposed
method is also lower than the result obtained using the compu-
tational package. At a level of significance of 0.05, the results of the
ANOVA test evidences the superiority of the network obtained
through the proposed method. Fig. 12 displays the box-plot dia-
gram of the ANOVA for the two network configurations.
8. Discussion and conclusions

In this work, a multi-phase EVOP was conducted for the
quantitative factors of ANN design. The first EVOP phase begins
with broad differences between factor levels until it came to a
point where the analysis shows no improvement. A new phase is
then initiated, focusing on the best configuration for the previous
phase and reducing the intervals between factor levels to a frac-
tion of the previous one. The EVOP phases continued up to a point
where no factor is deemed statistically significant to network
performance by ANOVA, or to a point that the designer deems to
be satisfactory.

The proposed method for the design of ANN was applied to
control surface roughness in two different machining processes. It
led to the identification of network topologies presenting
Please cite this article as: F.J. Pontes, et al., Design of experiments and
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reductions for training and testing [20,51]. Networks designed
according to the proposed method presented also reduction of
prediction error of 82.3% and 71.5% in comparison with the ANN
model results reported on the original papers.

In addition, statistical prediction error reduction of 9.7% and
46.3% was achieved when comparing the ANNs designed by the
proposed method with ANNs topologies identified by a compu-
tational tool intended to optimize network topologies, using the
same data set. Results obtained also reveal that the dispersion of
prediction errors is significantly reduced in comparison with the
networks proposed by the papers used as case studies and by
computer package.

The use of DOE techniques allows identifying and quantifying
each design factor impacts the most on network performance.
Moreover, the proposed method takes into account the effect of
interactions between factor levels that could affect the perfor-
mance. It encompasses also other advantages from DOE metho-
dology, such as the realization of hypothesis tests that can prove
the differences statistically and the assessment of the extent to
which factors left out of the design can influence model
performance.

The numerical experiments were conducted on an Intels Core
2 Quad machine with 1GB RAM. Script execution for each
experimental array took about 10 min. Time required for execution
increases, as expected, with the number of training cases. Data
processing and analysis for each cycle took around 30 min. It can
be said that computational cost per cycle is approximately one
hour. Such a time slice may be reduced by using more powerful
machines or investing in the development of software tools aimed
at implementing the whole algorithm of the analytic process.

Based on the results showed here, the proposed algorithm
constitutes an effective option for the systematic design of ANNs of
MLP architecture for controlling the surface roughness, filling the
gap reported in previous literature on the subject. The conclusions
obtained should not be extrapolated to architectures of ANN not
addressed in this work. On the other hand, the results achieved
and the generality of the proposed method does not prevent its
application to other network architectures as well as data collected
from other processes or from problems of other fields of
knowledge.

8.1. Further research

The method proposed in this paper can be employed for opti-
mization of distinct network architectures, such as RBF or SOM, for
example. The method could as well be applied to the optimization
of machine learning models, such a Support Vector Machines. It
could also be applied to datasets obtained from other processes, or
from other class of problems (such as classification).

Augmented version of the proposed evolutionary algorithm,
covering a larger number of factors, might lead to further reduc-
tions in prediction error of the roughness. The list of additional
optimization may include the kind of training algorithms of phases
1 and 2, the inputs and pruning of neurons, the weight decay
regularization in phases 1 and 2 of training, the use of transfer
functions and other pre-processing of data, among others.

Another interesting point worth further investigation is
the representation of an ANNs model generalization capability
in terms of extreme values statistical distribution.
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