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Abstract
Helical milling is an advanced hole-making process and different approaches considering controllable variables have been
presented addressing modeling and optimization of machining forces in helical milling. None of them considers the importance
of the noise variables and the fact that machining forces components are usually correlated. Exploring this issue, this paper
presents a multivariate robust modeling and optimization of cutting forces of the helical milling of the aluminum alloy Al 7075.
For the study, the tool overhang length was defined as noise variable since in cavities machining, there are specific workpiece
geometries that constrain this variable; the controllable variables were axial feed per tooth, tangential feed per tooth, and cutting
speed. The cutting forces in the workpiece coordinate system were measured and the components in the tool coordinate system,
i.e., the axial and radial forces, were evaluated. Since these two outcomes are correlated, the weighted principal component
analysis was performed together with the robust parameter design to allow the multivariate robust modeling of the mean and
variance equations. The normal boundary intersection method was used to obtain a set of Pareto robust optimal solutions related
to the mean and variance equations of the weighted principal component. The optimization of the weighted principal component
through the normal boundary intersection method was performed and the results evaluated in the axial and radial cutting force
components. Confirmation runs were carried out and it was possible to conclude that the models presented good fit with
experimental data and that the Pareto optimal point chosen for performing the confirmation runs is robust to the tool overhang
length variation. Finally, the cutting force models were also presented for mean and variance in the workpiece coordinate system
in the time domain, presenting low error regarding the experimental test, endorsing the results.

Keywords Helical milling . Cutting forces . Robust parameter design . Multivariate mean square error . Weighted principal
component . Normal boundary intersection

1 Introduction

Machining of holes is a complex task when manufacturing
a part. The conventional drilling process presents chal-
lenges such as the work material breakouts at hole exit, chip

removal, heat dissipation difficulties, and the increasing of
thrust forces, which happen due to the extrusion process of
material near the tool center point where the cutting veloc-
ity is close to zero. Burr on both entry and exit side of the
hole, poor dimensional, geometrical, and microgeometrical
accuracy are likewise significant due to friction between
tool, workpiece, and chip [1–3].

Helical milling has a field of application in aerospace ma-
terials, such as aluminum, titanium alloys, and carbon fiber-
reinforced polymers (CFRP)materials, and is nowadays wide-
ly applied in industry for machining holes with high precision
[4–7]. This process presents several benefits regarding the
conventional drilling. Because of the helical milling kinemat-
ics, cylindrical holes of different diameters can be machined
with the same tool. According to Iyer et al. [1], material re-
moval at and near the hole center occurs by cutting rather than
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by extrusion, resulting in lower thrust force. Low burr forma-
tion, little delamination in CFRP, good chip transportation,
good cutting fluid conditions, and high-dimensional, geomet-
rical, and microgeometrical accuracy compared with conven-
tional drilling can be achieved [1, 8] facilitating the assembly
of mechanical structures. The intermittent cutting process in
helical milling is useful for cooling, reducing the risk of tool
wear, breakage, or failure arising from elevated temperature.
Minimum quantity lubrication (MQL) and air blow could be
employed to assist chip transport while in many drilling ap-
plications, cutting fluid is used merely to flush the chips from
the cutting zone [9].

1.1 Cutting forces in helical milling

The helical milling process is based on a rotating mill, which
performs a helical trajectory. According to Fang et al. [10] and
Tanaka et al. [11], in helical milling, besides the tool rotation
around its own axis, with a related cutting velocity (vc) in
meters/minute, the result of the synchronism between the axial
feed of z CNC axis and the interpolation of the xy axes gen-
erates the helical path. The borehole diameter (Db) is deter-
mined by the tool diameter (Dt) and the helical diameter (Dh),
as shown in Fig. 1. This kinematics allows the generation of
different borehole diameters with a single mill by varying the
helical path diameter. The helical milling kinematics was pre-
viously described [12, 13] and may be defined regarding tan-
gential and frontal cut.

As shown in Eq. (1), the helical feed velocity (vf) in
millimeters/minute can be decomposed into the tangential

feed velocity of the helix (vfht) and the axial feed velocity of
the helix (vfha), both in millimeters/minute. The axial feed
velocity of the helix can be described considering the axial
feed per tooth (fza) in millimeters/tooth, the number of teeth
(z), and the spindle rotation speed (n) in revolutions per min-
ute, as in Eq. (2). In the circular trajectory, the tangential feed
velocity of the helix (vfht)—which is according to Pereira et al.
[13] the circular velocity of the tool center point related to the
helical diameter (Dh) in millimeter—can be mathematically
described in terms of the tangential feed velocity of the cutting
edge (vft) in millimeters/minute, related to bore hole diameter
(Db) in millimeter, as in Eq. (3).The tangential velocity (vft),
expressed in Eq. (4), may be described in function of the
tangential feed per tooth (fzt) in millimeters/tooth, the number
of teeth (z), and the spindle rotation speed (n) in revolutions
per minute.

v f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2fha þ v2fht

� �r
ð1Þ

vfha ¼ f za ⋅ z ⋅ n ð2Þ

vfht ¼ vft ⋅
Dh

Db
ð3Þ

vft ¼ f zt ⋅ z ⋅ n ð4Þ

In helical milling process, the helical pitch, Eq. (5), is the
axial cutting depth (ap

*) in millimeter, which depends mathe-
matically on the axial and tangential feed velocities. Then, it
can be described in terms of the angle of the helix (α),
expressed in Eq. (6). The axial cutting depth can be also de-
scribed considering the axial and tangential feed per tooth, fza
and fzt. This decomposition is important to address the effects of
the feed on these directions on the cutting force components.

a*p ¼ tan αð Þ ⋅ π ⋅Dh ¼ f za⋅ π ⋅Db

f zt
ð5Þ

α ¼ arctan
vfha
vfht

� �
ð6Þ

In cutting force prediction, it is relevant to define two co-
ordinate systems to describe the process tool motion: the
workpiece coordinate system and the tool coordinate system
[8, 12]. In the workpiece coordinate system, the coordinate
axis directions x, y, and z are fixed whereas the tool coordinate
system varies with tool rotation and orbital revolution. To
address cutting forces in helical milling, it is important to take
into consideration these two coordinate systems. The work-
piece coordinate system is used for monitoring. The

vc
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vfha

α

DtDh
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vcvf

Fig. 1 Helical milling kinematics
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components in the tool coordinate system are important to
understanding (i) the influence of the cutting parameters in
cutting forces and (ii) the correlation among cutting forces
and quality parameters, for instance, the dimensional devia-
tion due to radial force.

Predicting cutting forces is important to assure energy
economy, workpiece quality, tool integrity, and to reduce ma-
chining damage [14, 15]. Cutting forces have a relationship
with power consumption and tool wear [16]. In the precision
manufacturing of a part, minimizing cutting force levels al-
lows obtaining high-quality parts by minimizing vibrations,
tool wear, and tool deflection. Different studies are mentioned
in this section to summarize current results about cutting
forces trends and modeling in the helical milling process.

Among cutting force components in the helical milling pro-
cess, the axial force (Fa) acts along the z axis while the radial
force (Fr) acts toward the tool center [17]. It is relevant to
address Fr because it may lead to tool radial deflection causing
vibrations. This is related to geometrical and dimensional devi-
ations and degradation of the surface finish of the hole [18].

Concerning tool cutting edges, the peripheral cutting edge
generates mainly Fr, and the front cutting edge generates
mainly both Fr and Fa [17]. Fr is also called feed normal force
(FfN) [12]. It is a resultant force that can be calculated through
the components Fx and Fy, which are cutting forces in the x
and y directions on the xy plane of the workpiece coordinate

system, F r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fx

2 þ Fy
2

q
[19]. Fa, measured according to

the tool coordinate system, is equal to Fz, measured in the
workpiece coordinate system [19].

Brinksmeier et al. [8] studied helical milling kinematics
and modeled the undeformed chip geometry, considering pe-
ripheral and frontal cuts. Denkena et al. [12] assured that in the
helical milling process, continuous and discontinuous cuts are
presented in peripheral and frontal cut, respectively. This cut-
ting mechanics leads to differences in cutting forces and tem-
perature, generating force levels 10 times lower than force
levels in drilling process [9, 20].

Denkena et al. [12] studied cutting force components con-
sidering the tool coordinate system (feed force Ff and feed
normal force FfN) on CFRP–titanium layer compounds in
the helical milling. It was found that the axial feed per tooth
increases contributes to the progress of feed force and feed
normal force due to an increased pitch of the helical tool path.
Consequently, this increases the height of the undeformed
chip. The tangential feed per tooth increase leads to decreasing
feed and feed normal forces due to a reduction of the height of
the undeformed chip.

Shan et al. [20] studied the big pitch influence on machin-
ing force components in the helical milling of the aerospace
Al-alloy 6061. It was shown that the pitch increase leads to a
growth in the axial cutting force component Fz since the axial
feed increases with pitch increment.

Liu et al. [21] analytically modeled the cutting forces on
side cutting edges and on end cutting edges along the helical
feed path considering the tangential and axial feeds of the tool,
the spindle rotation, and the interaction between tool and
workpiece. However, the experimental results showed per-
centage error levels from 6.36 to 11.8% of the simulation
results.

Ventura and Hassui [14] modeled cutting forces in the he-
lical milling using a circular insert, taking into consideration
the tool contact angle and the respective depth of cut. The
simulation of Fz and Fy presented similar profiles when com-
pared to the experimental results, despite the observation of
some errors, which according to the authors, occurred mainly
due to the dynamics of the machine and the used
approximations.

Haiyan and Xuda [17] developed a mechanistic cutting
force model to improve the cutting force prediction in the
helical milling of CFRP. It considered the fiber cutting angle
according to helical milling cutting principles. The established
model with the cutting force coefficients seemed to be effi-
cient to calculate relative accurate cutting forces in the helical
milling of carbon fiber-reinforced polymers.

Wang et al. [19] conducted a comparative study involving
stacks of CFRP/Ti versus CFRP and Ti alloy single plate in
the helical milling process. Among the obtained results, dur-
ing the machining of stacks of CFRP/Ti, the cutting force
suddenly increased in machining of titanium alloy. That in-
crease is significant if compared to CFRP in the stack and in
the single titanium alloy layer. A good justification is the abra-
sive tool wear during CFRPmachining, leading to the increase
of cutting force, especially the axial cutting force Fz in titani-
um stack machining.

Rey et al. [22] developed cutting force models for the he-
lical milling of Ti–6Al–4V titanium alloy with consideration
to tool geometry and cutting conditions. They considered the
chip geometry regarding cutting conditions and tool geometry
and defined a cutting force model based on the instantaneous
chip thickness. The models for Fz and Fr achieved errors of
18.8 and 5.35%, respectively.

Li et al. [23] developed analytical cutting force models for
side and bottom flutes with cutter runout in helical milling.
The results showed the models considering the cutter runout
presented errors of 6.09, 10.72, and 13.59% in the x, y, and z
directions, which are better results than previous models.

Considering the referred results, it is necessary to obtain
better models for cutting force components in the helical mill-
ing process. Furthermore, the error levels of the proposed
analytical models are usually related to the environmental or
noise factors (variables), i.e., the non-controllable factors.
Modeling approaches that consider only controllable factors
do not take into consideration part of data variability, relative
to noise factors, without explanation. This can generate sig-
nificant error levels in predicting cutting forces. In addition,
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cutting force components usually present high correlation
structures, which can influence negatively the estimation of
regression model coefficients. Therefore, multivariate robust
modeling and optimization techniques need to be applied due
to the multivariate nature of cutting forces and the presence of
noise factors in the helical milling process.

Given the aforementioned discussion, the aim of this paper
is to optimize the correlated responses axial and radial cutting
force components of the helical milling of the aluminum alloy
Al 7075. The independent variables considered were axial and
tangential feed per tooth, cutting velocity, and tool overhang
length. In this line of reasoning, this work presents a multivar-
iate robust modeling and optimization method (MMSEW-
NBI), which is based on the weighted principal component
(WPC) technique, robust parameter design (RPD), response
surface methodology (RSM), mean square error (MSE), and
normal boundary intersection (NBI) optimization methods.

To deal with the correlation structure between the axial and
radial cutting forces, the weighted principal component tech-
nique was performed yielding principal component scores,
which represent the data set of the original correlated re-
sponses axial and radial cutting forces. Given these scores,
the next step could be carried out, which was the robust pa-
rameter design approach and response surface methodology.
Performing these techniques, response surface models for the
mean and variance equations of the weighted principal com-
ponent and the axial and radial cutting forces were obtained.
As the mean square error optimization technique is an ag-
glomeration strategy of two objective functions into one, lead-
ing to the same problems of the weighted sum method, the
normal boundary intersection optimization method was ap-
plied to achieve an even spread of Pareto optimal solutions
of the mean and variance equations of the weighted principal
component; then, through the optimization of the mean and
variance of the weighted principal component, the mean and
variance of the original responses were also optimized.
Moreover, confirmation runs were carried out to confirm the
process robustness regarding the noise factor, tool overhang
length.

In relation to cutting forces modeling, besides presenting
multivariate and univariate cutting force models for mean and
variance in the tool coordinate system, the present paper pre-
sents cutting force models for mean and variance equations in
the workpiece coordinate system in the time domain. These
models are also robust regarding the tool overhang length
variation.

To allow robust design and optimization, the tool overhang
length (lto) was considered as noise factor because in cavity
machining, there are specific workpiece geometries that con-
strain the tool overhang length [24]. Then, it is not a control
factor, i.e., it does not depend on the experimenter choice.
Figure 2a illustrates a mold with hole-making tasks, while
Fig. 2b shows that if lto is not enough, the tool holder may

collide with the workpiece during the helical milling process.
There are several papers dealing with lto effect, modeling, and
optimization in machining processes [25–27]. Quantifying the
effect of lto on process responses is important, but minimizing
its effect on process performance is essential because some-
times, the tool overhang length must be set according to the
workpiece geometry. It is necessary to select optimal process
factor levels to optimize the multiple set of responses, making
the process robust with consideration to the tool overhang
length variation. To achieve this aim, lto was controlled at
the experimental phase to assure the cutting force robustness
regarding its variation in a practical situation.

The relevance of the present paper to industrial problems
and situations is related to the fact that in on-line optimization
situations, engineers deal with environmental factors and cor-
related process outcomes. In relation to process application,
the helical milling brings a contribution in cutting forces
modeling, considering the robustness regarding the tool over-
hang length variation, providing cutting force models in the
tool and workpiece coordinate systems. Firstly, regarding
noise factors, they are present in distinct manufacturing sys-
tems and are always referred as sources of errors that may not
be easily controlled, leading to quality characteristic levels
frequently outside upper and lower process control limits.
Secondly, regarding correlated process outcomes, they may

(a)

(b)

Holder/workpiece
colision

Fig. 2 a Mold with hole-making tasks. b Insufficient × enough tool
overhang length (lto) for the helical milling
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impact negatively the process of evaluating regression coeffi-
cients, leading to predicting models that do not correctly rep-
resent real process performances. Therefore, the MMSEW-
NBI modeling and optimization method can easily take part
of engineer’s routine to deal with industrial problems related
to optimization issues that contemplate environmental factors
and correlated outcomes since the multivariate robust model-
ing and optimization method combines techniques capable of
overcoming the aforementioned issues.

2 Robust parameter design

Robust parameter design (RPD) is a methodology to improve
the quality of a product by minimizing the effect of causes of
variation without eliminating them. This is achieved by opti-
mizing process making its performance minimally sensitive to
causes of variation [28]. RPD through response surface meth-
odology (RSM) was firstly proposed byMyers et al. [29] with
the purpose of modeling the mean and variance equations
separately. In the context of RPD, different RSM approaches
are available and the two most popular are crossed arrays and
combined arrays. Crossed array is the first RPD methodology
and is made up of an inner array, considering controllable
factors, and an outer orthogonal array containing noise factors.
This methodology, however, does not consider the interac-
tions between process and noise factors and requires a consid-
erable number of runs [30].

Combined arrays were proposed by Welch et al. and
Shoemaker et al. [31, 32] and consist of running an experi-
mental design containing both controllable and noise factors,
eliminating the axial points related to noise factors as sug-
gested by Myers et al. [29]. Taking into consideration control-
lable and noise factors into a single design leads to lower
number of experimental runs and allows estimating the inter-
action between them [29, 31–33].

Through a combined array based on a central composite de-
sign (CCD), a surface response model for the quality character-
istics, in function of controllable and noise factors, y(x,z), can be
obtained using ordinal or weighted least squares, OLS andWLS,
respectively. Equation (7) presents the full quadratic response
surface model, where x and z are the vectors of controllable
and noise factors, respectively. 1 ≤ i ≤ k and 1 ≤ j ≤ r, where k is
the number of controllable factors and r is the number of noise
factors. β, λ, and δ are coefficients of the quadratic model.

y x; zð Þ ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i< j
∑βijxix j

þ ∑
r

j¼1
λ jz j þ ∑

k

i¼1
∑
r

j¼1
δijxiz j þ ε

ð7Þ

Assuming independent noise factors with mean error
equals to zero, variance σ2z j , and that noise factors are

uncorrelated with the random error ε, the mean and variance
equations can be obtained in Eq. (8) and Eq. (9), respectively.
σ2
z j can be considered equal to 1 since the factor levels are

scaled, and σ2 is the residual error obtained in ANOVA.
This approach is referred to as the propagation of error
(POE). The variance equation is essentially a response surface
with linear, quadratic, and second-order interaction terms.

Ez y x; zð Þ½ � ¼ f xð Þ ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i< j
∑βijxix j ð8Þ

V z y x; zð Þ½ � ¼ σ2
z j ∑

r

j¼1

∂y x; zð Þ
∂z j

� �2( )
þ σ2 ð9Þ

3 Mean square error optimization

The mean square error (MSE) optimization method was pro-
posed by Box [34] and studied by Lin and Tu [35] and is
expressed in Eq. (10), where T is the Utopia point obtained
by Minx ∈ Ω ŷ xð Þ½ �, ŷ xð Þ corresponds to the mean equation and

σ̂2 is the variance equation. This approach, according to the
authors, aims to minimize bias and variance and may be called
dual response surface (DRS). Furthermore, mean and variance
models can be obtained using crossed array or combined array
approaches.

Min MSE ¼ ŷ −T
� �2

þ σ̂
2

	 

ð10Þ

Lin and Tu [35] also proposed the weighting of the mean
and variance equations, as in Eq. (11), in order to allow the
evaluation of various operational settings based on w1 and w2

values of interest.

Min MSEw ¼ w1 ŷ − T
� �2

þ w2σ̂̂
2

	 

ð11Þ

In a scenario considering multiple modeled DRS, the opti-
mization problem has multivariate nature and consists of a mul-
tivariate mean square error optimization. Thereby, Köksoy [36]
extended the MSE criteria, proposing an agglutination strategy
that optimizes theMSE of multiple responses, using a weighted
sum or choosing the more important MSE function as objective
function and setting the others as constraints. The agglutination
strategy using weighted sum is exposed in Eq. (12).

Min MSET ¼ ∑
p

i¼1
wiMSEi

	 

ð12Þ
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Since most of manufacturing processes present multivari-
ate nature, with significant correlation structure among re-
sponses, Paiva et al. [37] proposed a combination of MSE
concepts with surface responses wrote in terms of principal
component scores. This approach is the multivariate mean
square error (MMSE), as illustrated in Eq. (13).

Min MMSEi ¼ PCi−ξPCi

� �2 þ λi

h in o
ð13Þ

In Eq. (13), PCi is the regressionmodel for the i-th principal
component score, ξPCi is the Utopia point for this score, and λi
is its respective eigenvalue. For p correlated responses, there
are p uncorrelated principal component scores; thereby, the
MMSE approach could be expanded considering the k most
representative scores of data variability, i.e., scores with λi ≥ 1.
Equation (14) expresses this agglutination.

MinMMSET ¼ ∏
k

i¼1
MMSEi λi≥1jð Þ

� � 1
kð Þ

¼ ∏
k

i¼1
PCi−ξPCi

� �2 þ λi λi≥1j
h i	 
 1

kð Þ

i ¼ 1; 2;…; k; k ≤p

ð14Þ

Paiva et al. [38] applied MMSET on RPD considering a
crossed array. Subsequently, Paiva et al. [39] extended the
referred multivariate methodology for RPD considering a
combined array. Through p correlated response models,
considering process and noise factors, response models
for the most representative principal component scores
were achieved. Appling the POE approach, mean and var-
iance equations for principal components were obtained
and this multivariate optimization approach is exposed in
Eq. (15).

MinMMSE F ið Þ xð Þ ¼ ∏
k

i¼1
ω Ez Pc x; zð Þi

 �
−ξPCzi

� �2 þ 1−ωð Þ σ2
z ∑

r

j¼1

∂Pc x; zð Þi
∂z j

� �
þ σ2

" #" #( ) 1
kð Þ

i ¼ 1; 2;…; k; k≤p

ð15Þ

4 Weighted principal component analysis

In analyzing multi-response data, serious mistakes can be
made. Fitting multi-response models without taking into con-
sideration dependencies among responses can lead to difficul-
ties, and the validity of the regressionmodels under study may
be denied [40]. Principal component analysis (PCA) may be
applied to describe correlated responses in terms of uncorre-
lated principal components and to reduce problem dimension
[41]. In the current context, an alternative approach for the
multivariate mean square error optimization may consider all
the p principal component scores agglomerated into a single
score weighted by their respective eigenvalues. The weighted
principal component (WPC) resumes all p components into
one component without any loss of information [42], simpli-
fying the modeling and optimization.

The main idea behind the principal component analysis is
to reduce the p original dimension in a system of k ≤ p coor-
dinates considering a significant part of the correlated re-
sponse information. Considering p correlated responses

yT ¼ y1; y2; …; yp
h i

, with mean vector μT = [μ1, μ2,

…, μp] and variance–covariance matrixΣpxp, p uncorrelated
pr incipal components can be achieved with the
maximization of the variance of the linear combination

PCi ¼ eTi y ¼ e1iy1 þ e2iy2 þ…þ epiyp, with i = 1, 2, …, p,

where eTi represents the standardized eigenvectors obtained
from the eigenvalues, λ1 ≥ λ2 ≥… ≥ 0, and from the vari-
ance–covariance matrixΣpxp [43]. These linear combinations
describe the selection of a new coordinate system obtained by
rotating the original system [44].

In a real situation, it is not possible to know the popu-
lation parameters, and the responses may present different

scales and units. Considering the estimated mean vector yT

¼ y1; y2; …; yp
h i

and the estimated correlation matrix

R, the i-th principal component estimation is defined as

P̂Ci ¼ Z½ �T E½ �, where Z is the standardized original re-
sponses matrix and E is the eigenvectors matrix. In this
scenario, the exposed principles can be used to obtain the
principal component estimates.

The weighted principal component score WPC is the linear
combination of scores of the p principal components, which
considers its respective eigenvalues as scalars [42], as exposed
in Eq. (16), in which the subscript “s”means the experimental
run number.

WPCs ¼ λ̂1P̂C1s þ λ̂2P̂C2s þ…þ λ̂rP̂Crs ð16Þ
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5 Normal boundary intersection method

To overcome the drawbacks of the weighted summethod, Das
and Dennis [45] proposed an approach called normal bound-
ary intersection (NBI), which is a geometrically inspired
scalarization method for solving non-linear multi-objective
optimization problems, and its aim is to obtain evenly distrib-
uted Pareto optimal points, generating continuous frontiers
regardless the weights attributed to the objective functions,
which are process responses. In contrast to the weighted sum
method, the NBI method finds a near-uniform spread of
Pareto optimal solution options in the frontier [46]. In accor-
dance with Zhang et al. [47], a set of points can be only
considered as Pareto optimal if any improvement in one of
the process responses leads to a setback in at least one of the
other responses. Thus, the NBImethod allows the experiment-
er a better exploitation of process parameters, facilitating anal-
yses of the trade-off between a set of process responses.

The first step of the NBI method is to establish the payoff
matrix Φ [48, 49]. The payoff matrix is composed by the indi-
vidual optimization of each objective function, evaluated in all
objective functions involved in the multi-objective optimiza-
tion problem. The payoff matrix can be written as in Eq. (17).

Φ ¼

f *1 x*1
� �

⋯ f 1 x*i
� �

⋯ f 1 x*m
� �

⋮ ⋱ ⋮
f i x

*
1

� �
⋯ f *i x*i

� �
⋯ f i x

*
m

� �
⋮ ⋱ ⋮

f m x*1
� �

⋯ f m x*i
� �

⋯ f *m x*m
� �

2
66664

3
77775 ð17Þ

InΦ, x*i represents a solution vector composed by values of
process parameters that minimizes the i-th objective function fi
individually. Thus, f *i x*i

� �
is the optimal solution for the i-th

objective function, i = 1, 2,…, m. The other solutions f i x
*
i

� �
,

which are not on the main diagonal of Φ, are obtained by
replacing x*i in the remaining functions.

The set of individual optimal solutions that represents the

main diagonal forms a vector called Utopia point, f U ¼
f *1 x*1
� �

; …; f *i x*i
� �

; …; f *m x*m
� � �

T . On the other hand,
the set of solutions that are most distant from the
individual optimal of each objective function, i.e.,

Max f *i x*i
� �

; …; f i x
*
m

� �� �
, forms a vector known as pseu-

do nadir point, f PN ¼ f PN1 ; …; f PNi ; …; f PNm
 �

T . The
normalization of each objective function should be made
due to the nature of each process response. In doing so, the
objective functions become dimensionless. Normalization can
be performed as in Eq. (18).

f i xð Þ ¼ f i xð Þ− f *i
f PNi − f *i

ð18Þ

The normalized payoff matrix Φ is in Eq. (19).

Φ ¼

f 1 x*1
� �

⋯ f 1 x*i
� �

⋯ f 1 x*m
� �

⋮ ⋱ ⋮
f i x

*
1

� �
⋯ f i x

*
i

� �
⋯ f i x

*
m

� �
⋮ ⋱ ⋮

f m x*1
� �

⋯ f m x*i
� �

⋯ f m x*m
� �

2
66664

3
77775 ð19Þ

According to Das and Dennis [45], the convex combina-

tions formed by the sets of points of each row ofΦ generate
the convex hull of individual minima (CHIM), or Utopia
line in bi-objective problems or Utopia plan in situations
with more than two objective functions [46]. The Utopia
line/plan is delimited by anchor points. An anchor point is
the result of the individual optimization of only one objec-
tive function [46].

An optimization problem based on the NBI method can be
written as in Eq. (20) [45].

Max x;tð Þ t

Subject to : Φβþ tn̂ ¼ F xð Þ
x∈Ω
g j xð Þ≤0
h j xð Þ ¼ 0

ð20Þ

Where t ∈ R represents the distance between a point on
CHIM and a point on the Pareto frontier and n̂ represents a unit
vector normal to CHIM towards the origin that crosses a point

Φβi. The weight β is a vector containing the degree of impor-
tance that is intended to be linked to each objective function,
β ¼ β1; …; βi; …; βm½ � T , 0 ≤ βi ≤ 1, ∑m

i¼1βi ¼ 1, i = 1,

2,…, m. F xð Þ is a vector containing the normalized objective

functions, F xð Þ ¼ f 1 x*ð Þ; …; f i x
*ð Þ; …; f m x*ð Þ �

T .

Thus, Φβþ tn̂ represents a set of points normal to CHIM.
According to Das and Dennis [50], the point of intersection

between the normal Φβþ tn̂ and the boundary of the fea-
sible region (Pareto frontier) closest to the origin is the
global optimum. This global optimum will correspond to
the maximization of the distance between a point on CHIM
and the Pareto frontier.

6 Multivariate robust parameter design
through weighted principal component
analysis and normal boundary intersection

It is possible to obtain a response model considering the
weighted principal component scores WPCs by defining an
experimental procedure based on a central composite design,
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which combines the process and noise factors. The response
model is shown in Eq. (21).

WPC x; zð Þ ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i< j
∑βijxix j

þ ∑
k

j¼1
λ jz j þ ∑

k

i¼1
∑
r

j¼1
δijxiz j þ ε

ð21Þ

Based on POE principles, mean and variance equations can
be obtained for WPC, through Eq. (22) and Eq. (23). These
equations represent, respectively, the multivariate mean and
variance of the p correlated responses.

Ez WPC x; zð Þ½ � ¼ Ez xð Þ ð22Þ

Vz WPC x; zð Þ½ � ¼ Vz xð Þ ¼ σ2
z j ∑

r

j¼1

∂WPC x; zð Þ
∂z j

� �2( )
þ σ2 ð23Þ

By using Eq. (22) and Eq. (23), a multivariate mean
square error criterion based on the weighted principal
component scores may be presented, as in Eq. (24). The
constraint xTx ≤ ρ2 is related to the experimental region,
ξWPCz is the Utopia point of Ez WPC x; zð Þ½ � obtained by
Minx ∈ Ω Ez WPC x; zð Þ½ �f g. Through this approach, the
multivariate bias and variance can be minimized.

MinMMSEW ¼ ω Ez WPC x; zð Þ½ �−ξWPCz

� �2 þ 1−ωð Þ σ2
z j ∑

r

j¼1

∂WPC x; zð Þ
∂z j

� �2

þ σ2

" #( )

subject to : xTx≤ρ2
ð24Þ

Paiva et al. [51] applied similar criteria in modeling a
response surface for WPC considering only controllable
factors. This approach presents a robust optimization
MMSEW considering WPC modeling based on combined
arrays and on the POE approach to derive mean and vari-
ance equations. The MMSEW proposed approach in Eq.
(24) can be used to generate trade-off solutions for the mean
and variance dual optimization problem. However, this ap-
proach is a weighted sum of mean and variance as well as
the approaches in Eqs.10–15.

Due to the shortcomings of the weighted sum method in
generating an even spread of Pareto optimal points, the
NBI method may be applied together with the MMSEW

method, depicted in Eq. (24). Considering the bi-
objective NBI problem applied to the trade-off problem
between Eq. (22) and Eq. (23), a payoff matrix Φ is initial-
ly constructed based on optimal points of each isolated
objective function. The solutions that minimize Ez xð Þ and
V z xð Þ are, respectively, x*E and x*V . The pay-off matrix for
this specific dual problem is in Eq. (25).

Φ ¼ E*
z x*E
� �

EPN
z x*V
� �

VPN
z x*E
� �

V*
z x*V
� �� �

ð25Þ

The elements of the payoff matrix will compose the an-
chor points, i.e., the extreme values of the Pareto frontier.
E*
z x*E
� �

and V*
z x*V
� �

are utopia points, i.e., optimal values
obtained through the optimization of Ez xð Þ and V z xð Þ, re-
spectively. The worst results for these functions are called
pseudo nadir points and are labeled EPN

z x*V
� �

and VPN
z x*E

� �
.

These extreme values on the solution space can be used to

normalize the objective functions, as expressed in Eq. (26)
and Eq. (27).

Ez xð Þ ¼ Ez xð Þ−E*
z x*E
� �

EPN
z x*Vð Þ−E*

z x*Eð Þ ð26Þ

V z xð Þ ¼ V z xð Þ−V*
z x*V
� �

VPN
z x*Eð Þ−V*

z x*Vð Þ ð27Þ

Finally, the solution for this two-objective NBI optimi-
zation problem, called MMSEW-NBI, can be exposed as in
Eq. (28).

Min Ez xð Þ
s:t: : Ez xð Þ−V z xð Þ þ 2wi−1 ¼ 0
g j xð Þ≥0
0≤ωi≤1

ð28Þ

The MMSEW-NBI problem needs to be solved iterative-
ly considering different weights. The space between two
consecutive weights is defined as a constant δ [52]. For a
bi-objective case, the number of Pareto optimal solutions
(n) may be calculated as n = δ−1 + 1. Thus, it is possible to
obtain weights for the optimization problem presented in
Eq. (29) as wi = (i − 1)δ, i = 1, 2, …, n. Therefore, w1 = 0,
w2 = δ, w2 = δ, …, wn = 1.

Explicitly, the MMSEW-NBI method, proposed in this pa-
per, in terms of mean and variance of the weighted principal
component, Eq. (29), allows obtaining equispaced Pareto
frontiers, considering the mean and variance equations of the
WPC response model, which represents a set of correlated
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responses without loss of information. In Eq. (29), the symbol
ψ indicates that the value of the variance equation between
brackets is in the normalized form.

Min Ez WPC x; zð Þ½ �

s:t: : Ez WPC x; zð Þ½ �− σ2
z j

∑
r

j¼1

∂WPC x; zð Þ
∂z j

� �2

þ σ2
" #ψ

þ 2wi−1 ¼ 0

xTx≤ρ2
0≤wi≤1

ð29Þ

The MMSEW-NBI method may be referred as a new
procedure to optimize bias and variance of multivariate data
without loss of information. The bias ω(Ez[WPC(x, z)]
− ξWPCz)

2 is not optimized explicitly in the objective func-
tion of the formulation in Eq. (29). Nevertheless, as the
target ξWPCz is obtained through Minx ∈ Ω{Ez[WPC(x,
z)]}, the proposed method in Eq. (29) will naturally mini-
mize the bias and may be considered an alternative to the
multivariate robust mean square error optimization to
achieve an even spread of solutions for the trade-off be-
tween mean and variance of multivariate data without loss
of information.

Lopes et al. [53] proposed a similar approach for robust
modeling and optimization of the arithmetic average surface
roughness and the maximum roughness height. However, the
present paper proposes to the experimenter the possibility of
using the weighted principal component technique, avoiding
loss of information, i.e., 100% of the variance–covariance
structure of the original set of process outcomes is taken into
consideration to estimate regression coefficients that consider
all the variance–covariance influence on the response surface
models. Besides that, applying the MMSEW-NBI method on
the helical milling is an important novelty since researches
involving statistical influence of noise factors and correlated
outcomes on this hole-making process have not been widely
studied yet.

To solve the non-linear programming problems (NLP) pro-
posed in Eq. (24) and Eq. (29), several algorithms can be
applied. One alternative algorithm is the generalized reduced
gradient (GRG) [38, 54].

To reach a robust approach to modeling and optimiza-
tion of cutting forces in the helical milling process, the
new proposed MMSEW-NBI method is applied. The prac-
tical objective is to achieve cutting force models robust to
the tool overhang length variation in the helical milling,
i.e., in function of cutting parameters. Robustness is
reached by achieving cutting parameter levels which are
insensitive to the tool overhang length variation. This will
allow a good fit of the cutting force models with experi-
mental results in the tool and workpiece coordinate sys-
tems. The proposed approach is the first application of
multivariate robust modeling and optimization in the heli-
cal milling process.

7 Experimental procedure

This work is a sequence of a previous work on modeling and
optimization of the helical milling process of the aluminum
alloy Al 7075 [55]. In this referred first work, three outcomes
were considered: axial cutting force component (Fz), total
roundness (Ront), and material removal rate (MRR).
However, in this previous publication, only Fz = Fa was pre-
sented with consideration to cutting force components. The
radial cutting force Fr, measured in the xy plane, was not
considered in that work since the intention was not only the
modeling of cutting forces of the helical milling. In the present
work, a statistically based approach is proposed for multivar-
iate robust modeling and optimization of cutting forces of the
helical milling process, without loss of information. When
dealing with cutting forces modeling and optimization in the
helical milling, it is important to consider Fa, which is related
to the axial direction and is generally the main cutting force
component in terms of magnitude, and Fr, which is measured
in the circular plane, and consequently may be related to di-
mensional and geometrical deviations. Besides considering
the cutting force components in the tool coordinate system,
i.e., Fa and Fr, the present approach provides models for the
cutting force components in the workpiece coordinate system
Fx, Fy, and Fz. In these two viewpoints, robust models are
provided, mean and variance models, considering the propa-
gation of error regarding the tool overhang length.

Fa and Fr were modeled in function of three controllable
variables (CV) and one noise variable (NV) that can be seen in
Table 1 along with their symbols, units, and levels. The tool
overhang length was chosen as noise variable because it can
be controlled only in an experimental scenario; on the other
hand, it cannot be controlled at a production scenario since in
molds and die machining there are workpieces geometries
which constrain the tool overhang length, to avoid collisions
between tool system and workpiece/fixture. Figure 3 illus-
trates the setup of the three tool overhang length levels.
Consequently, the RPD-RSM methodology is applied in this
work to make Fa and Fr less sensitive to the tool overhang
length variation. It is important to study the robustness of the
tool overhang length in relation to cutting forces in helical
milling, especially regarding Fr, since the tool overhang length
is related to tool deflection, which may cause vibrations, and
consequently dimensional, geometrical, andmicrogeometrical
errors [17]. Moreover, the variables presented in Table 1 were
also taken into consideration to model Fr and the mean and
variance equations of the weighted principal component.

With the variables and levels presented in Table 1, a central
composite design with 26 runs was used. Then, nF = 2k + r =
23 + 1 = 16 factorial points (coded level = ± 1) were carried out
taking into consideration controllable and noise variables. The
factorial points are important to study main effects of process
and factors and process × process and process × noise
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interactions. The propagation of error considers not only the
isolated effect of noise variable but also the effect of noise on
controllable variables. nA = 2 × k = 2 × 3 = 6 axial points (cod-
ed levels = ± 2) were conducted considering only process var-
iables to estimate their quadratic effects. Finally, nC = 4 center
points (coded level = 0) were conducted to allow an indepen-
dent estimation of experimental error and support the calcula-
tion of quadratic terms.

The axial runs corresponding to the tool overhang length
(noise variable) were not considered, and the experiments
were conducted in random order to yield the most accurate
analyses of data.

The axial distance for this design is ρ = (24)1/4 = 2.
However, when considering the process experimental space,
since mean and variance equations are in function of only
controllable parameters, the axial distance will become
ρ = (23)1/4 = 1.682, which is the radius of the spherical con-
straint to the controllable variables in the optimization prob-
lem; thus, the solutions will be forced by the spherical con-
straint to fall within the experimental solution.

Here, besides Fa, Fr was calculated considering the results of
Fx and Fy. Since Fa and Fr are statically correlated, the new
non-linear multivariate robust modeling and optimization
method (MMSEW-NBI) can be performed to optimize both
responses through the optimization of mean and variance equa-
tions of the weighted principal component, Ez[WPC(x, z)] and
V z WPC x; zð Þ½ �, respectively, without loss of information.

A CNC machining center was used in the experimental
tests, with the following characteristics: Romi Discovery
560, maximum power of 15 kW, spindle speed of 10,000
RPM, numerical control Siemens 810D CNC Sinumerik.
The cutting tool used for machining the workpieces was an
uncoated solid carbide end mill with the following character-
istics: 10 mm diameter, 4 teeth, and 30° helix angle. The
cutting fluid was soluble biodegradable emulsifiable oil for
machining Bio 100 from Biolub Química® applied on wet
condition.

The characteristics of the aluminum alloy Al 7075 work-
pieces were 23-mm diameter and 14-mm height. Boreholes
with 15-mm diameter were obtained in helical milling tests.
Due to the ratio between mechanical resistance and density,
the aluminum alloy Al 7075 has been widely applied in the
aircraft industry due to its high mechanical strength to spe-
cific mass.

The machining components Fa and Fr were measured
with a stationary piezoelectric dynamometer, model
Kistler®9272 with four components and signal amplifier.
The three components Fx, Fy, and Fz in the workpiece
coordinate system were measured during the tests.
Figure 4 shows the experimental setup (a), helical milling
test (b), nomenclature (c), and graphical results of cutting
forces (d).

In this paper, the following software were used for
modeling and optimization: MS-Excel®, Minitab®, and

Fig. 3 Tool overhang length
setup

Table 1 Controllable and noise
variables. Adapted from [55] with
permission from Elsevier, license
number 4153600491710

Type of variables Variables Symbols Units Levels

−2 −1 0 1 2

CV Axial feed per tooth fza μm/tooth 0.5 4 7.5 11 14.5

CV Tangential feed per tooth fzt μm/tooth 15 40 65 90 115

CV Cutting velocity vc m/min 10 30 50 70 90

NV Tool overhang length lto mm – 30 38 46 –
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Matlab®. The routine of the MMSEW-NBI method is illus-
trated in Fig. 5. In Fig. 5, it is seen that if there is no
correlation among outcomes, univariate analysis should
be performed and an optimization method should be cho-
sen to solve the non-linear optimization problem; this pro-
cess is illustrated by the symbol (+), indicating that this is
another process.

Considering Fig. 5, the procedure for the MMSEW-NBI
method can be described for replication and better understand-
ing through the following steps:

Step 1: Define the experimental design
Define a central composite design combining control and
noise factors. Run the experimental design, measure the
responses and store the results.
Step 2: Evaluate the correlation among outcomes
Before starting PCA, it is indispensable to calculate the
correlation among responses. It could be done by analyz-
ing the Pearson correlation coefficient together with the p
value for each pair of responses.
Step 3: Run the principal component analysis
In the case of correlation, run the PCA analysis for the
correlated responses using the correlation matrixR. Store
the scores of the p principal components and their respec-
tive eigenvalues and eigenvectors.
Step 4: Define the weighted principal component scores
Define theWPC scores as linear combinations of the scores
of the p principal components weighted by their respective
eigenvalues, as in Eq. (16). Store the WPC scores.

Step 5: Build the WPC response model in function of
controllable and noise factors
Use ordinal (OLS) or weighted least square (WLS)
methods to build a complete response model for WPC
(x, z) through Eq. (21), considering linear terms, interac-
tion between noise and control factors, and quadratic
terms for controllable factors.
Step 6: Define mean and variance equations
Through RPD, define mean and variance equations of
the weighted principal component, Ez WPC x; zð Þ½ � and
V z WPC x; zð Þ½ �, respectively, as defined in Eq. (22) and
Eq. (23). Henceforth, Ez WPC x; zð Þ½ � might be refer-
enced as Ez xð Þ and V z WPC x; zð Þ½ � might be referenced
as Vz(x).
Step 7: Define the payoff matrix

Obtain the utopia points E*
z x*Ez WPCð Þ
h i

and V*
z x*Vz WPCð Þ
h i

through the constrained optimization problems
MinxTx ≤ ρ2 Ez WPC x; zð Þ½ �f g a n d MinxTx ≤ ρ2 V z WPC½f
x; zð Þ�g, respectively. The solution vector x*Ez WPCð Þ corre-
sponds to the best individual values of fza, fzt, and vc that
minimizeEz(x) =Ez[WPC(x, z)]. In the same line of reason-
ing, x*V z WPCð Þ contains the best individual values of the con-
trollable variables that minimize Vz(x) = Vz[WPC(x, z)].
Using x*Ez WPCð Þ andx

*
Vz WPCð Þ, define the pseudo nadir points

EPN
z x*V z WPCð Þ
h i

and VPN
z x*Ez WPCð Þ
h i

. Build the payoff ma-

trix as in Eq. (25).
Step 8: Normalization
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Fig. 4 Experimental procedure (i) holder, (ii) tool overhang length, (iii) tool, (iv) workpiece, (v) fixture, (vi) hole-making through helical milling, (vii)
dynamometer
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Using the payoff matrix, normalize the mean and vari-
ance functions of the weighted principal component as
well as the payoff matrix, as proposed in Eq. (26) and
Eq. (27).
Step 9: Choose weights
Before carrying out the MMSEW-NBI method, the
weights should be calculated. First, calculate the number
of Pareto optimal solutions (n) according to the desired
increment δ between weights. Given n and δ, it is possible
to obtain weights wi, which are in Eq. (29), as wi = (i −
1)δ, i = 1, 2, …, n. For instance, in this paper, wn = 1
forces the optimization problem to achieve the best set-
ting of fza, fzt, and vc inherent to the best level of
Ez[WPC(x,z)].
Step 10: Run the MMSEW-NBI method
Solve the MMSEW-NBI method iteratively for dif-
ferent weights, as defined in Eq. (29), using the
GRG algorithm. Build a Pareto frontier with
equispaced Pareto solutions considering the Pareto
optimal points for Ez(x) = Ez[WPC(x , z)] and
Vz(x) = Vz[WPC(x, z)].
Step 11: Confirmation runs
Choose one or more Pareto optimal points according
to preferences of the decision maker. Run tests consid-
ering a robust optimal vector, for instance

x*wi
¼ f *za; f

*
zt; v

*
c

� �
, for different noise factor condi-

tions. Test the process robustness for the Pareto opti-
mal conditions and the proximity for the measured
responses with the predicted values.

8 Results and discussion

8.1 Experimental design

Table 2 presents the experimental design with cutting force
results for the helical milling tests in the aluminum alloy Al
7075. Here, in terms of experimental results, the novelty is the
response Fr measured in the xy plane, which may cause di-
mensional, geometrical, and microgeometrical deviations.
Besides, in the present approach, multivariate analysis is car-
ried out, and cutting force models are obtained in the tool and
workpiece coordinate system.

8.2 Correlation evaluation, principal component
analysis, and weighted principal component scores
estimation

The Pearson correlation coefficient between Fa and Fr was
r = 0.83 with p value = 0.000, confirming a significant cor-
relation between the responses at the significance level (α)
of 0.05, and justifying the multivariate modeling.
Considering the two responses, a spectral decomposition
on the correlation matrix R can be performed to obtain
eigenvalues and eigenvectors of R. Thus, the results are
stored in Table 3. The first principal component accounts
for 91.6% of the variance–covariance structure between Fa

and Fr, while the second one accounts for 8.4% of the data
variability. It means that PC1 could represent the original
responses since it accounts for more than 80% of the

Fig. 5 Routine of the MMSEW-NBI method
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variance–covariance structure and its eigenvalue is more
than 1. However, a linear combination of both principal
components may be calculated to avoid loss of informa-
tion, leading to a representation of 100% of the variance–
covariance structure besides solving the correlation issue.
Therefore, the weighted principal component concept

already stated in this work was considered for representing
the uncorrelated components PC1 and PC2.

To illustrate the original responses and their principal
components, Fig. 6 shows a scatter plot of the original re-
sponses correlated positively. Graphically, it can be illus-
trated in Fig. 6 what was stated in the previous paragraph in
relation to the data variability explained by PC1 and PC2. In
Fig. 6, it is seen that the variability explained by PC2, in-
herent to the PC2 axe, is lower than the variability explained
by PC1, inherent to PC1 axe. Although PC1 explains most of
the variance–covariance structure, PC2 should not be ig-
nored when desiring to totally explain the variance–covari-
ance structure inherent to Fa and Fr; therefore, it favors
using the weighted principal component technique.

In Fig. 6, the ellipse is expressed by y−yð Þ TS−1 y−yð Þ ¼ c2,
where yT = (Fa, Fr) is the vector of the original outcomes, yT

¼ Fa; F r

� � ¼ 214:61; 190:96ð Þ, c is a constant and in this

Table 2 Experimental design with responses. Adapted from [55] (experimental design and Fa) with permission from Elsevier, license number
4153600491710

Std order CV NV Responses Scores

fza fzt vc lto Fa Fr PC1 PC2 WPCs

[μm/tooth] [μm/tooth] [m/min] [mm] [N] [N] –

1 4 40 30 30 147 136 −1.40 0.35 −2.51
2 11 40 30 30 249 248 0.99 0.10 1.83

3 4 90 30 30 184 113 −1.15 −0.35 −2.17
4 11 90 30 30 274 262 1.44 −0.09 2.63

5 4 40 70 30 186 136 −0.88 −0.16 −1.65
6 11 40 70 30 263 294 1.61 0.36 3.01

7 4 90 70 30 189 97 −1.23 −0.56 −2.35
8 11 90 70 30 272 232 1.14 −0.34 2.02

9 4 40 30 46 188 148 −0.75 −0.08 −1.39
10 11 40 30 46 266 284 1.55 0.22 2.87

11 4 90 30 46 215 97 −0.89 −0.90 −1.79
12 11 90 30 46 254 255 1.12 0.10 2.08

13 4 40 70 46 174 147 −0.94 0.10 −1.71
14 11 40 70 46 266 253 1.26 −0.07 2.29

15 4 90 70 46 198 91 −1.17 −0.74 −2.26
16 11 90 70 46 273 254 1.35 −0.15 2.45

17 0.5 65 50 38 30 25 −3.98 0.80 −7.15
18 14.5 65 50 38 288 346 2.43 0.54 4.53

19 7.5 15 50 38 176 190 −0.50 0.49 −0.83
20 7.5 115 50 38 194 179 −0.39 0.15 −0.68
21 7.5 65 10 38 171 202 −0.46 0.67 −0.72
22 7.5 65 90 38 197 196 −0.17 0.27 −0.26
23 7.5 65 50 38 228 187 0.14 −0.21 0.22

24 7.5 65 50 38 243 192 0.38 −0.35 0.63

25 7.5 65 50 38 227 202 0.26 −0.05 0.47

26 7.5 65 50 38 228 199 0.25 −0.09 0.44

Table 3 Eigenanalysis
of Fa and Fr PC1 PC2

Eigenvalue 1.832 0.168

Proportion 0.916 0.084

Cumulative 0.916 1.000

Eigenvectors PC1 PC2

Fa 0.707 −0.707
Fr 0.707 0.707
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work c2 = 2.45, which represents an ellipse at a confidence
level of 95%, and

S ¼ 2998:57 3370:14
3370:14 5473:97

� �

is the estimated variance–covariance matrix whose main di-
agonal contains the variances of Fa and Fr, and the secondary
diagonal contains the covariance between Fa and Fr. There is a
single point outside the confidence ellipse, which is corre-
spondent to Fa = 30 N and Fr = 25 N, according to Table 2,
row 17. In Fig. 7, it is seen that through the Mahalanobis
distance approach, there is one outlier between the values of
the outcomes Fa and Fr, and this outlier is related to the point
outside the confidence ellipse in Fig. 6. This point is inherent
to fza set to 0.5 μm/tooth, which is its positive axial point. In
the central composite design, the factorial and axial points are

at the same and highest distance from the center and, there-
fore, present the highest variance levels regarding the experi-
mental region. As fza is generally the most influent variable on
cutting force components, this variability is expected in ex-
treme points. To assure a balanced design and sufficient de-
grees of freedom, this point is important to estimate the qua-
dratic effect of fza.

The observed uncorrelation considering the new coordinate
system with PC1 and PC2 axes is quite important for step 5 so
that the coefficients of the WPC(x,z) response surface model
can be correctly estimated.

The scores of the weighted principal component, which
represent the correlated responses without loss of information,
were calculated through linear combination as in Eq. (16),
considering the two principal component scores and their re-
spective eigenvalues. The scores of the weighted principal
component were stored in Table 2.

Fa [N]

Fr [N]
rF

aF

Fig. 6 Correlated original
responses (r = 0.832)
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8.3 Response surface model and robust parameter
design for weighted principal component, Fa, and Fr

Henceforth, the variables will be presented in coded units;
therefore, the response surface models will be also present-
ed in coded units unless it is written uncoded units. The full
quadratic WPC(x,z) response surface model proposed in
Eq. (21) was calculated using the WLS algorithm and is
expressed in Eq. (30). The full quadratic response surface
models Fa(x,z) and Fr(x,z) were also calculated and are
expressed in Eq. (31) and Eq. (32), respectively. The qua-
dratic regression models represented by Eq. (31) and Eq.

(32) are essential to apply the Pareto optimal solutions con-
sidering the results of the MMSEW-NBI optimization in the
original responses. The statistical summary of the regres-
sion models, presented in Table 4, confirms good adjust-
ments of data and no lack-of-fit (LOF) for all the full qua-
dratic response surface models at the significance level of
0.05. The WPC(x,z) model presented good determination
coefficients, confirming high data variability explanation,
with R2

adj = 95.11%, and suitable properties of prediction of
the response model, R2

pred = 81.73%. Furthermore, the
models of the original responses also presented good deter-
mination coefficients and properties of prediction.

WPC x; zð Þ ¼ 0:605þ 2:231 f za−0:074 f zt þ 0:051vc þ 0:100lto−0:087 f 2za−0:255 f
2
zt−0:193v

2
c þ 0:053 f za � f zt

þ0:046 f za � vc−0:094 f za � lto−0:139 f zt � vc−0:055 f zt � lto−0:147vc � lto
ð30Þ

Fa x; zð Þ ¼ 242:575þ 43:100 f za þ 7:049 f zt þ 2:905vc þ 5:151lto−9:472 f 2za−7:663 f
2
zt−7:882v

2
c−6:001 f za � f zt

þ2:000 f za � vc−4:612 f za � lto þ 0:393 f zt � vc−3:480 f zt � lto−1:946vc � lto
ð31Þ

F r x; zð Þ ¼ 194:422þ 72:028 f za−12:407 f zt−1:429vc þ 1:787lto−2:059 f 2za−2:134 f
2
zt þ 1:205v2c þ 7:009 f za � f zt

þ0:973 f za � vc þ 1:490 f za � lto−3:479 f zt � vc−3:223 f zt � lto−0:070vc � lto
ð32Þ

Figure 8 shows interaction plots for WPC(x,z). In these
plots, process and noise effects on the cutting forces are illus-
trated. The positive effect of fza on all the response surface
models is remarkable. In this line of reasoning, the axial feed
per tooth, which generates continuous cut, has a significant
role on the cutting force levels.

The literature assures that the effect of fza is positive
and remarkable on the cutting force components because
as fza increases with fzt kept unchanged, the axial cut-
ting depth ap

* increases, and both the areas that are cut
by peripheral and frontal cutting edges increase.
However, the low effect of fzt was observed because
when fzt increases with fza kept constant, the chip thick-
ness in the peripheral cut increases, but the axial cutting
depth ap

* decreases [56].
The interaction plot between vc and lto shows that cutting

velocity levels between 60 and 70 m/min are insensitive to
tool overhang length variation. When performing the optimi-
zation, these levels of cutting velocity are confirmed. It means
that with these levels of cutting velocity, the cutting force
components will not vary due to the tool overhang length
variation. Then, according to the geometry of the workpiece,
the experimenter may set the necessary tool overhang length
without affecting the cutting forces during helical milling.

As graphically illustrated, no significant linear effect is
present regarding fzt and vc. However, some curvature may
be observed in these parameters in relation to cutting forces.
Besides, the slope difference in the interactions may guide the
search for robustness. For instance, in the interaction between
vc and lto, cutting velocity levels close to 60 m/min make the
process robust to the tool overhang length variation. It means
that with this cutting velocity, the cutting forces will not be
affected by the variation of the tool overhang length.

Through the RPD approach, as proposed in Eq. (22) and Eq.
(23), mean and variance equations were obtained in function of
controllable variables, considering the variation transmitted by
the noise factor. These models are robust to the tool overhang

Table 4 Model summary

Statistics Fa Fr WPC

σ̂2
1.11 1.40 1.30

R2 (%) 98.33 99.98 97.65

R2
adj (%) 96.52 99.95 95.11

R2
pred (%) 83.79 98.57 81.73

LOF (p value) 0.42 0.53 0.17
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length variation. The coefficients of the mean and variance
equations ofWPC(x,z), Fa(x,z) and Fr(x,z) are in Eqs. (33–38 ).

Multivariate robust optimal setting for the machining force
components in the helical milling process must be obtained by
minimizing the mean and variance fitted equations of
WPC(x,z). The achieved optimal levels of the controllable

variables must optimize the original correlated responses Fa
and Fr, minimizing the influence of the tool overhang length
variation and considering the influence of the variance–co-
variance structure in the modeling and optimization problem.
Figure 9 shows the response surface plots for the mean and
variance of WPC(x,z) under different perspectives.

Ez WPC x; zð Þ½ � ¼ 0:605þ 2:231 f za−0:074 f zt þ 0:051vc−0:087 f 2za−0:255 f
2
zt−0:193v

2
c þ 0:053 f za � f zt

þ0:046 f za � vc−0:139 f zt � vc
ð33Þ

Vz WPC x; zð Þ½ � ¼ 1:307−0:019 f za−0:011 f zt−0:029vc þ 0:009 f 2za þ 0:003 f 2zt þ 0:022v2c þ 0:010 f za � f zt
þ0:028 f za � vc þ 0:016 f zt � vc

ð34Þ

Ez Fa x; zð Þ½ � ¼ 242:575þ 43:100 f za þ 7:049 f zt þ 2:905vc−9:472 f 2za−7:663 f
2
zt−7:882v

2
c−6:001 f za � f zt

þ2:000 f za � vc þ 0:393 f zt � vc
ð35Þ

Vz Fa x; zð Þ½ � ¼ 27:642−47:511 f za−35:850 f zt−20:050vc þ 21:271 f 2za þ 12:110 f 2zt þ 3:788v2c þ 32:100 f za � f zt
þ17:953 f za � vc þ 13:546 f zt � vc

ð36Þ

Ez F r x; zð Þ½ � ¼ 194:422þ 72:028 f za−12:407 f zt−1:429vc−2:059 f
2
za−2:134 f

2
zt þ 1:205v2c þ 7:009 f za � f zt

þ0:973 f za � vc−3:479 f zt � vc
ð37Þ

V z F r x; zð Þ½ � ¼ 4:594þ 5:327 f za−11:521 f zt−0:249vc þ 2:221 f 2za þ 10:388 f 2zt þ 0:005v2c−9:606 f za � f zt
−0:208 f za � vc þ 0:449 f zt � vc

ð38Þ
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Fig. 8 Interaction plot for WPC(x,z) response surface model

2706 Int J Adv Manuf Technol (2018) 95:2691–2715



8.4 Utopia, nadir, and payoff matrix calculation
for multi-objective optimization

For any multi-objective optimization procedure, it is neces-
sary to calculate the utopia and pseudo nadir for each re-
sponse, besides the payoff matrix. The utopia points

E*
z x*Ez WPCð Þ
h i

¼ E*
z −1:67 ; 0:16 ; 0:04ð Þ ¼ −3:406

and

V*
z x*Vz WPCð Þ
h i

¼ V*
z 0:28 ; 0:16 ; 0:44ð Þ ¼ 1:297

were obtained as solutions of the non-linear optimization prob-
lems MinxT x ≤ 2:828 Ez WPC x; zð Þ½ �f g and MinxTx ≤ 2:828

Vz WPC x; zð Þ½ �f g, respectively. Note that WPC can assume
negative values because it is standardized and dimensionless.
The uncoded levels of the utopia points are E*

z
1:6 μm=tooth ; 69:1 μm=tooth ; 50:7 m=minð Þ a n d
V*
z 8:5 μm=tooth ; 69:0 μm=tooth ; 58:8 m=minð Þ.
The optimal vector for Ez[WPC(x,z)] combines the low-

est level of fza = 1.6 μm/tooth with fzt = 69.1 μm/tooth
slightly larger than the center point (65.0 μm/tooth), and
vc = 50.7 m/min is practically on center point (50.0 m/
min). The optimal levels, which minimize the variance of
WPC due to the tool overhang length effect, present levels
of the controllable factors higher than their center points,
with fza = 8.5 μm/tooth (center point equals to 7.5 μm/
tooth) and fzt = 69.0 μm/tooth close of the center point level
(65.0 μm/tooth), and vc = 58.8 m/min, which is between its
center point (50.0 m/min) and its upper factorial level
(70.0 m/min).

Hold values
fza = 7.5 μm/tooth

Hold values
fzt = 65 μm/tooth

Hold values
vc = 50 m/min

(a) (b)

(a) (b)

(a) (b)

Fig. 9 Surface plots for a WPC
mean model and bWPC variance
model
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The payoff matrix is built using the respective optimal fac-
tors levels for Ez[WPC(x,z)] and Vz[WPC(x,z)], i.e., −1.67;
0.16; 0.04 and 0.28; 0.16; 0.44. The pseudo nadir points

EPN
z x*V z WPCð Þ
h i

¼ EPN
z 0:28 ; 0:16 ; 0:44ð Þ ¼ 1:187;

and

VPN
z x*Ez WPCð Þ
h i

¼ VPN
z −1:67 ; 0:16 ; 0:04ð Þ ¼ 1:356

were obtained, which makes it possible to build the payoff
matrix Φ as

Φ ¼ −3:406 1:187
1:356 1:297

� �
.

8.5 MMSEW-NBI multi-objective optimization

Applying the MMSEW-NBI method iteratively, the optimi-
zation results were achieved and are resumed in Table 5.

The Pareto frontier considering Ez[WPC(x, z)] = Ez(x) and
Vz[WPC(x, z)] = Vz(x) is exposed in Fig. 10a. For compar-
ison purposes, the MMSEw, Eq. (24), was solved iterative-
ly and the Pareto frontier is exposed in Fig. 10b. The
MMSEw did not generate an equispaced frontier. On the
other hand, the proposed MMSEW-NBI method was effi-
cient in generating equispaced Pareto optimal solutions. It
is important to use a Pareto filter to exclude the dominated
points from the optimization results. In this study, the
MMSEW-NBI method generated four dominated solutions.

The derived results for the mean and variance of Fa and
Fr are also resumed in Table 5. It is relevant to state that
related to Fa, there were higher levels of Pareto optimal
results in terms of mean and variance when compared to
the mean and variance levels of Fr. The Pareto optimal
results of variance for Fr presented low dispersion. In
Table 5, standard deviation (SD) results were also stored
since in manufacturing situations this estimate is more use-
ful than the variance estimate.

In Table 5, it is observed that for higher levels of the axial
feed per tooth, the expected values for the machining forces
are also higher. On the other hand, for lower levels of the

Table 5 MMSEW-NBI optimization results

Process variables Responses

Coded Uncoded Ez[Fa] Varz[Fa] SDz[Fa] Ez[Fr] Varz[Fr] SDz[Fr] Ez[WPC] Varz [WPC]

w fza fzt vc fza fzt vc
[μm/tooth] [μm/tooth] [m/min] [N] [N2] [N] [N] [N2] [N]

0 0.28 0.16 0.44 8.5 69.0 58.8 254.6 7.1 2.7 212.2 4.2 2.0 1.187 1.297

0.05* 0.09 0.21 0.54 7.8 70.3 60.9 246.7 9.8 3.1 197.3 2.8 1.7 0.728 1.297

0.1* −0.10 0.26 0.64 7.2 71.6 62.9 238.2 12.9 3.6 182.5 2.0 1.4 0.269 1.297

0.15 −0.28 0.32 0.74 6.5 73.0 64.8 229.3 16.2 4.0 167.9 1.5 1.2 −0.191 1.297

0.2* −0.46 0.36 0.84 5.9 74.1 66.7 219.8 20.2 4.5 153.5 1.4 1.2 −0.650 1.297

0.25* −0.63 0.40 0.93 5.3 75.0 68.6 209.8 24.6 5.0 139.3 1.6 1.3 −1.109 1.297

0.3 −0.80 0.41 1.03 4.7 75.4 70.7 199.0 29.9 5.5 125.5 2.1 1.4 −1.569 1.297

0.35 −0.96 0.47 1.11 4.2 76.9 72.3 188.6 34.1 5.8 111.2 2.9 1.7 −2.028 1.297

0.4 −1.10 0.68 1.08 3.7 82.0 71.5 181.4 34.3 5.9 94.3 5.9 2.4 −2.483 1.297

0.45 −1.26 0.62 0.93 3.1 80.6 68.6 173.4 49.7 7.0 83.2 6.1 2.5 −2.774 1.299

0.5 −1.36 0.57 0.81 2.7 79.3 66.2 167.9 62.6 7.9 76.6 6.0 2.4 −2.950 1.303

0.55 −1.43 0.52 0.71 2.5 78.1 64.2 163.8 74.0 8.6 72.1 5.7 2.4 −3.073 1.307

0.6 −1.49 0.48 0.62 2.3 77.0 62.4 160.4 84.6 9.2 68.9 5.5 2.3 −3.164 1.312

0.65 −1.53 0.44 0.54 2.1 75.9 60.7 157.6 94.4 9.7 66.6 5.2 2.3 −3.234 1.317

0.7 −1.57 0.40 0.46 2.0 74.9 59.1 155.2 103.6 10.2 65.0 4.9 2.2 −3.287 1.322

0.75 −1.60 0.36 0.38 1.9 73.9 57.6 153.2 112.3 10.6 63.9 4.5 2.1 −3.328 1.328

0.8 −1.62 0.32 0.31 1.8 72.9 56.1 151.4 120.7 11.0 63.2 4.2 2.0 −3.359 1.333

0.85 −1.64 0.28 0.24 1.8 72.0 54.7 149.9 128.6 11.3 62.9 3.9 2.0 −3.381 1.339

0.9 −1.66 0.24 0.17 1.7 71.0 53.4 148.6 136.4 11.7 63.0 3.5 1.9 −3.396 1.344

0.95 −1.67 0.20 0.10 1.7 70.1 52.0 147.5 143.6 12.0 63.3 3.2 1.8 −3.404 1.350

1 −1.67 0.16 0.04 1.6 69.1 50.7 146.5 150.6 12.3 64.0 2.9 1.7 −3.406 1.356
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axial feed per tooth, the expected values for the machining
forces are lower as well. It can be explained by considering
the technological characteristic of the helical milling repre-
sented by its kinematics and by the two points in Table 5,
the points inherent to w = 0 and w = 1, which have similar
levels for the tangential feed per tooth. In this way, the
points are x*w¼0 = [8.5 μm/tooth, 69 μm/tooth, 58.8 m/

min] and x*w¼1 = [1.6 μm/tooth, 69.1 μm/tooth, 50.7 m/
min]. These points were chosen because they present a
great discrepancy between the levels of fza and because this
factor is the most significant one for both machining forces.
In this line of reasoning, the first point, x*w¼0, has higher
levels of the machining forces if compared to the levels of
the forces related to the second point, x*w¼1, because the

axial cutting depth related to x*w¼0 = [8.5, 69, 58.8], based
on Eq. (5), is higher than the axial cutting depth related to
x*w¼1 = [1.6, 69.1, 50.7]. It is easy to demonstrate this find-
ing through the analysis of the helical milling kinematics.
First, through Eqs. (1–4 ), some helical milling parameters
were evaluated. Without loss of generality, they are present-
ed in Table (6).

The values in Table 6 are important for the calculation of
the angle of the helix, Eq. (6). For x*w¼0 = [8.5; 69; 58.8], the
angle of the helix is

α x*w¼0

 � ¼ arctan
34:0

92:0

� �
¼ 0:354 radian

and for x*w¼1 = [1.6; 69.1; 50.7], the angle of the helix is

α x*w¼1

 � ¼ arctan
6:4

92:1

� �
¼ 0:069 radian

By analyzing the angle of the helix related to these two
points, it is already easy to realize that due to the higher level
of fza in x*w¼0, higher cutting efforts are demanded since fza
contributes to the increase of the axial feed velocity of the
helix (vfha), increasing the angle of the helix, see Fig. 1, and
because fza has a high impact on the cutting forces. To support
this statement, the axial cutting depth was also evaluated for
better understating these higher efforts requirement. For x*w¼0

= [8.5, 69, 58.8], the axial cutting depth, based on Eq. (5), is

a*p x*w¼0

 � ¼ tan 0:354ð Þ⋅π⋅5 ¼ 5:8 mm

In contrast, for x*w¼1 = [1.6, 69.1, 50.7], the axial cutting
depth is

a*p x*w¼1

 � ¼ tan 0:069ð Þ⋅π⋅5 ¼ 1:1mm

As it is observed, when fza increases, the axial cutting depth
increases; both areas that are cut by peripheral and frontal
cutting edges also increase, and it requires high cutting efforts,
resulting in higher levels of machining forces.

Table 6 Helical milling parameters for x*w¼0 and x
*
w¼1

Parameters
x*w¼0 x*w¼1

Unit

fza 0.0085 0.0016 mm

fzt 0.0690 0.0691 mm

vc 58.8 50.7 m/min

vfha 34.0 6.4 mm/min

vft 276.0 276.4 mm/min

vfht 92.0 92.1 mm/min

vf 98.1 92.4 mm/min
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Fig. 10 Pareto frontiers of a MMSEW-NBI method and b MMSEw method
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8.6 Confirmation runs

Confirmation runs were carried out on the robust Pareto opti-
mal vector x*w¼0:5 = [−1.36, 0.57, 0.81], which in decoded
units stands for x*w¼0:5 = [2.7 μm/tooth, 79.3 μm/tooth,
66.2 m/min]. The weight w = 0.5 was chosen to guarantee a
good compromise between mean and variance. This Pareto
optimal vector resulted in Ez[WPC] = −2.950, Varz[WPC] =
1.303, Ez[Fa] = 167.9 N, SD[Fa] = 7.9 N, Ez[Fr] = 76.6 N,
SD[Fr] = 2.4 N. The power curve in Fig. 11 guarantees that a
sample with n = 3 helical milling confirmation tests is suffi-
cient to detect a difference of 5 N in Fa and Fr, considering
their respective experimental standard deviations, with proba-
bilities to detect this difference equal to 0.98 and 0.95,
respectively.

Table 7 presents the results of the confirmation runs con-
sidering the three lto levels and three replications, as deter-
mined by the power test. The mean and standard deviation
levels obtained for Fa and Fr were Ez[Fa] = 167.9 N, with
SDz[Fa] = 7.9, Ez[Fr] = 76.6 N, with SDz[Fr] = 2.4 N. The
Pearson correlation test for Fa and Fr resulted in r = 0.910 with
p value = 0.001. Therefore, the covariance structure between
the force components cannot be neglected.

To assure homoscedasticity, i.e., the robustness of the
Pareto optimal vector x*w¼0:5 = [−1.36, 0.57, 0.81] regard-
ing the lto variation, the Levene’s test was performed for Fa

and Fr considering the noise factor lto and is resumed in
Fig. 12. As the null hypothesis of the Levene’s test attests
the variance equality and the p values are higher than the
significance level, p value > α = 0.05, the homoscedasticity
of the responses with consideration to the noise factor lto
cannot be rejected. In practical terms, it means that the
variance regarding the tool overhang length variation is
homogeneous in this robust Pareto optimal solution.
However, the homogeneity of means regarding this noise
factor should also be attested. Then, the MANOVA analysis
was performed, considering the three tool overhang length
levels (30, 38, 46) and Fa and Fr as responses, to assure
more power on conclusions, taking into consideration not
only the variances but also the covariance between the re-
sponses. Table 8 presents the MANOVA analysis of the
confirmation runs considering the correlated responses Fa

and Fr against the noise factor lto. It can be stated that the
noise factor effect is not significant on the correlated re-
sponses since the p values for the three criteria are higher
than the significance level, i.e., p value > α = 0.05. This
means that, considering the optimal vector x*w¼0:5 =
[−1.36, 0.57, 0.81], the process is robust to the tool over-
hang length variation.

Figure 13 shows the confidence intervals for the confirma-
tion runs for Fa and Fr, considering the three different noise
factor levels and the robust optimization results. In red refer-
ence lines, the predicted robust optimal mean levels are
depicted, Fa

* = 167.9 N and Fr
* = 76.6N. For Fa, the predicted

value was inside of the three confidence intervals with con-
sideration to tool overhang length levels. For Fr, the predicted
mean value was inside of only the confidence interval for lto =
38 mm. However, the Pareto optimal value for Fr

* also pre-
sents a confidence interval associated with its standard devia-
tion SDz[Fr] = 2.4 N.
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Fig. 11 Power curve for a Fa and for b Fr

Table 7 Confirmation runs

Run order lto (mm) Fa [N] Fr [N]

1 38 176.8 86.4

2 46 163.6 84.9

3 30 169.9 90.3

4 38 169.0 85.9

5 46 174.9 94.1

6 46 176.2 93.9

7 38 175.9 89.1

8 30 174.4 92.2

9 30 173.8 92.9
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The confirmation runs showed that the helical milling pro-
cess of the aluminum alloy Al 7075, considering the correlat-
ed responses Fa and Fr, is robust to the tool overhang length
variation considering the optimal vector x*w¼0:5. The other
Pareto optimal points obtained through the MMSEW-NBI
method are also robust to the considered noise factor.
Obviously, as the trade-off between mean and variance of
the multivariate response, WPC was explored by an
equispaced Pareto frontier obtained through the MMSEW-
NBI method; the equispaced Pareto points allow to the deci-
sion maker the possibility of choosing the desired balance
betweenmean and variance of the correlated responses, which
is very important for manufacturing engineers and for multi-
variate optimization researchers.

8.7 Cutting force models in the workpiece coordinate
system and time domain

It is also important to set-up cutting force models in the work-
piece coordinate system. In the present approach, the mean
and variance models in the tool coordinate system are present-
ed to assure robustness regarding the tool the overhang length
variation. The models in the workpiece coordinate system are
derived from the models in the tool coordinate system.
Therefore, robustness is also achieved in the workpiece coor-
dinate system.

As Fz = Fa, the models for mean and variance for Fz are
strictly equal to the Eq. (35) and Eq. (36), as presented in Eq.
(39) and Eq. (40).

Ez Fzð Þ ¼ 242:575þ 43:100 f za þ 7:049 f zt þ 2:905vc−9:472 f 2za−7:663 f
2
zt−7:882v

2
c−6:001 f za � f zt

þ2:000 f za � vc þ 0:393 f zt � vc
ð39Þ

V z Fzð Þ ¼ 27:642−47:511 f za−35:850 f zt−20:050vc þ 21:271 f 2za þ 12:110 f 2zt þ 3:788v2c þ 32:100 f za � f zt
þ17:953 f za � vc þ 13:546 f zt � vc

ð40Þ

The models for Fx and Fy are derived regarding Fr, Eq.

(41). Since F r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fx

2 þ Fy
2

q
, leaving the gap between Fx

and Fy aside.

Fx ¼ Fy ¼ 1ffiffiffi
2

p F r ð41Þ

Applying the mean operator, one obtains

Ez Fx½ � ¼ Ez Fy

 � ¼ Ez
1ffiffiffi
2

p F r

� �
¼ 1ffiffiffi

2
p Ez F r½ � ð42Þ
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Fig. 12 Levene’s test for equal variances. Multiple comparison intervals for the standard deviation, α = 0.05. a Fa vs lto and b Fr vs lto

Table 8 MANOVA for Fa and Fr vs lto

Criterion Test statistic F DF p

Num Denom

Wilks’ 0.27 2.30 4 10 0.131

Lawley–Hotelling 2.66 2.66 4 8 0.112

Pillai’s 0.74 1.74 4 12 0.205

Roy’s 2.65 – – – –

s = 2, m = −0.5, n = 1.5 – – – –
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These models in time domain are defined as follows:

Ez Fx½ � ¼ 1ffiffiffi
2

p Ez F r½ �cos ωo⋅tð Þ ð43Þ

Ez Fy

 � ¼ 1ffiffiffi
2

p Ez F r½ �sin ωo⋅tð Þ ð44Þ

where ωo, in radian/second, is the angular velocity of the or-
bital feed motion, and t, in seconds, is the time. The angular
velocity of the orbital feed motion ωo is calculated according

to Eq. (45), where the orbital rotation speed no is obtained
according to Eq. (46) [13].

ωo ¼ 2πno
60

ð45Þ

no ¼ vfht
π⋅Dh

ð46Þ

Finally, replacing Eq. (37) into Eq. (43) and Eq. (44), the
models for mean of Fx and Fy are explicitly exposed in Eq.
(47) and Eq. (48).

Ez Fxð Þ ¼ 1ffiffiffi
2

p 194:422þ 72:028 f za−12:407 f zt−1:429vc−2:059 f
2
za−2:134 f

2
zt þ 1:205v2c þ 7:009 f za � f zt

þ0:973 f za � vc−3:479 f zt � vc

	 

cos ωo⋅tð Þ ð47Þ

Ez Fy

� � ¼ 1ffiffiffi
2

p 194:422þ 72:028 f za−12:407 f zt−1:429vc−2:059 f
2
za−2:134 f

2
zt þ 1:205v2c þ 7:009 f za � f zt

þ0:973 f za � vc−3:479 f zt � vc

	 

sin ωo⋅tð Þ ð48Þ

Analogously, the variance operator may be applied in Eq.
(41). By doing so, it may be obtained:

V z Fx½ � ¼ V z Fy

 � ¼ Vz
1ffiffiffi
2

p F r

� �
¼ 1

2
V z F r½ � ð49Þ

The variance for Fx and Fy may not be obtained in the time
domain since variance cannot assume negative values.
Explicitly, Eq. (50) provides the variance for Fx and Fy. This
equation provides an estimate of the error in the cutting force
components on xy plane regarding the tool overhang length
variation.

V z Fxð Þ ¼ V z Fy

� � ¼ 1

2
4:594þ 5:327 f za−11:521 f zt−0:249vc þ 2:221 f 2za þ 10:388 f 2zt þ 0:005v2c−9:606 f za � f zt
−0:208 f za � vc þ 0:449 f zt � vc

	 

ð50Þ
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Fig. 13 Interval plot of a Fa vs lto and b Fr vs lto
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Considering the optimal vector x*w¼0:5, Fig. 14 shows the
predicted cutting force in the workpiece coordinate system ac-
cording to Eq. (39), Eq. (47), and Eq. (48) together with the
experimental levels of one of the confirmation runs. As it may
be observed, the predicted values were close to the experimental
values. However, the propagation of error proposed in RPDwith
combined array represents in the equation a part of variability
regarding the experimental error, which may take into account
another noise factor not considered in the present study. Then,
the proposed method may be applied in the helical milling con-
sidering others noise factors of this process to allow predicting
the variability of cutting forces more precisely. It is usual to
provide the percentage error of cutting force models regarding
experimentally obtained values. However, in the present ap-
proach, there is a model to predict the error, i.e., the variance
model for each cutting force component. As these models are in
function of helical milling parameters, the error of the proposed
approach will vary according to the selected Pareto optimal
vector in the experimental region. It means that there are exper-
imental levels, whichwere achievedwith the proposed approach
MMSEW-NBI, obtained to achieve low variance levels. For the
example exposed in Fig. 14, the percentage errors in Fx, Fy, and
Fz were 1.05, 0.15, and 0.67%, respectively. In other experimen-
tal regions, where the process is not robust regarding the tool
overhang length variation, these levels of error may not be guar-
anteed. Then, it is important to consider the variance models to
achieve lower error levels of the mean models regarding exper-
imental levels. Besides, these models work inside the experi-
mental region, i.e., respecting the constraint xTx = fza

2 + fzt
2 +

vc
2 ≤ ρ2 = 2.828, in coded units.

9 Conclusions and future works

The present work presented a new multivariate robust model-
ing and optimization method. The method guarantees the

multivariate modeling and optimization of bias and variance
of the axial and radial cutting force components of the helical
milling process of the aluminum alloy Al 7075. Also, there is
no loss of information, through the optimization of the mean
and variance equations of the weighted principal component.

The tool overhang length was set as a noise factor since in
cavity machining there are specific workpiece geometries that
constrain this factor. To complete the set of independent var-
iables, the axial and tangential feed per tooth and cutting ve-
locity were chosen as controllable factors.

The MMSEW-NBI’s combination was proposed to allow
the replication of the method. The weighted principal compo-
nent technique was carried out to avoid loss of information
and to deal with the correlation problem between the axial and
radial cutting force components.

The results showed good determination coefficients for the
response surface models of the weighted principal component
and the axial and radial cutting force components. The NBI
method optimized the mean and variance equations of the
weighted principal component. Optimal vectors were replaced
in the mean and variance equations of the helical milling out-
comes considered in this paper, leading to their robust optimal
solutions. Pareto frontiers were plotted considering mean and
standard deviation estimates of the weighted principal compo-
nent, confirming that the MMSEW-NBI method is efficient in
generating equiespaced Pareto solutions.

Confirmation runs were carried out on the optimal ro-
bust vector x*w¼0:5 = [2.7 μm/tooth, 79.3 μm/tooth, 66.2 m/
min] with three tool overhang length levels (30, 38, 46)
[mm] and three replications. Levene’s test revealed that
the homoscedasticity of the outcomes with consideration
to the noise factor cannot be rejected, i.e., the robustness of
the Pareto optimal vector x*w¼0:5 was confirmed. To assure
more power on conclusions, the multivariate analysis of
variance (MANOVA) was performed considering the con-
firmation runs; the results showed that the noise factor
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Fig. 14 Comparison of
experimental and modeled cutting
force in the workpiece coordinate
system. fza = 2.75 μm/tooth, fzt =
79.3 μm/tooth, and vc = 66.2 m/
min
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effect is not significant on the correlated outcomes, consid-
ering the optimal vector.

Besides obtaining mean and variance cutting force models
in the tool coordinate system, mean and variance models for
the cutting force components were also obtained in the work-
piece coordinate system in the time domain. Considering the
optimal vector x*w¼0:5, the percentage errors in Fx, Fy, and Fz
were only 1.05, 0.15, and 0.67%, respectively. The variance
models of the cutting forces regarding the tool overhang
length is an important achievement since the experimenter
may apply the Pareto optimal experimental solutions to
achieve lower error levels for mean models obtained for cut-
ting force components.

For future works, other helical milling responses could be
taken into consideration when performing the proposed mul-
tivariate robust and optimization method like roughness and
geometrical error responses. Furthermore, extra helical mill-
ing noise factors could be explored like tool wear, workpiece
hardness, workpiece grain sizes, and others. Different multi-
variate methods could be explored for multivariate statistical
analysis. Finally, additional optimization methods could be
tested in comparison with NBI and MSE, methods like nor-
malized normal constraint (NNC), ε-constraint, and others
that allow the inclusion of multivariate techniques in their
routines.
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