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ABSTRACT One of the main goals in flux-cored arc welding processes is the optimization of bead geometry,
in which multiple geometric characteristics of the welding bead are important; therefore, multiobjective
optimization programming is often applied. However, several optimization problems that use stochastic
programming do not consider the impact of the correlation between the output variables on their probabilistic
constraints. In this context, this paper aims to present a multiobjective optimization method based on
multivariate stochastic programming. To demonstrate the applicability of the proposal, we conducted a
design of experiments to optimize a flux-cored arc welding process for stainless-steel claddings. The
weighting-sums method was applied to formulate the multiobjective optimization problem. It was possible
to formulate a multivariate probability distribution for the penetration and dilution. In addition, a 95%
probability to meet the predefined specification limits of the geometric characteristics was achieved.

INDEX TERMS Bead geometry, bivariate normal distribution, flux-cored arc welding, multiobjective
optimization programming, stainless steel claddings, stochastic programming.

I. INTRODUCTION
In practical optimization problems of industrial processes,
the assumption that the input data are deterministic is rarely
sustained. In fact, certain key inputs that are clearly random
are instead represented by their expected values. Such an
approach may be justified under special conditions; however,
in several applications, it is possible to demonstrate that such
a formulation is inadequate [1].

For example, in the general linear programming formula-
tion, Min f(x) = C′x is a vector of deterministic objective
functions that needs to be minimized and Ax ≤ b is a set of
constraints [2]. In most approaches reported in the literature,
matricesC andA and vector b are composed of deterministic
values. Nevertheless, these vectors and matrices may have
random inputs in actual problems.

Therefore, it is important to model the stochastic nature
of the inputs in optimization problems. To achieve this,
stochastic programming (SP) can be used as a technique to
measure and analyze the impact on the variability of the
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responses [3]–[6] and has been used in different sectors.
Dai et al. [7] presented a literature review of all different
SP methods that have been applied only in unit commit-
ment (UC), including multi-stage SP and chance-constrained
programming (CCP). Reddy et al. [8] provided a literature
review on stochastic programming methods applied in the
optimization of smart grids (SG). The recourse method and
CCP were cited as widely used within the SG context.

In addition to the random aspect, most optimization prob-
lems present multiple and, often, conflicting responses of
interest [9]. In such cases, it is necessary to consider the
multivariate nature of the data [10]. For instance, correlated
data present a significant variance–covariance structure; to
properly compute the probabilities involved in the problem,
multivariate techniques should be used. These strategies have
been widely employed in various segments [11]–[14]. Con-
sidering a random distribution of vectors that contain cor-
related variables, there is a multivariate normal distribution
(MND), each element of which has been assigned a univariate
normal distribution [15].

Within this context, the present authors propose a mul-
tivariate stochastic optimization method, referred to as
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multivariate chance-constrained programming (MCCP). This
method integrates multivariate statistics to the classic CCP
method [16].

The MCCP will be applied to a flux-cored arc weld-
ing (FCAW) process for stainless-steel claddings based on
weighted sums and the MND. Although several SP applica-
tions have already been published, the present authors could
not find any studies in which SP had been applied to FCAW
processes.

First, the response surface methodology (RSM) will be
used, through which the geometric characteristics of the
FCAW process will be analyzed. SP coupled with the MND
will be used in the cases where the optimization problem
would be defined as the maximization of the bead width (W )
and reinforcement (R), subjected to the predefined minimum
probability that both the penetration (P) and dilution (D)
would be below their upper specification limits (USL).
This paper is organized as follows: in Section 2, the theoret-

ical background of stainless-steel claddings, RSM, SP, MND,
the weighted-sums method, and the generalized reduced gra-
dient algorithm will be presented. In Section 3, the materials
and the proposed method will be described. In Section 4, the
results will be presented and the application of the method in
the FCAW process will be discussed. Finally, the conclusions
will be drawn in Section 5.

II. THEORETICAL BACKGROUND
A. STAINLESS-STEEL CLADDINGS
Stainless-steel cladding is an industrial process that has
attracted significant attention from researchers. It refers to
the surfacing of a low-carbon steel substrate with a corrosion-
resistant material [17]. The advantages of this process include
the improvement of surface properties, the recovery of ele-
ments affected by wear and corrosion, easier use of hard-
ened steels and wear-resistant alloys, and cost reduction by
using smaller amounts of expensive materials by minimizing
the expenditures on maintenance and surfacing speed [18].
Consequently, by applying the aforementioned process,
the surface presents better properties, the overall process cost
decreases, and the manufacturability may increase. However,
the challenge that remains is to control the dilution and to
guarantee a satisfactory bead geometry [19].

A variety of methods have been used in the cladding of
carbon steels with stainless steels, such as metal inert gas,
metal active gas, tungsten inert gas (TIG), submerged arc
welding, and FCAW.

FCAW comprises a metal fusion process that uses the
heat of the electric arc between the wire and the work-
piece [20]. This process, in particular, presents notable pro-
ductivity results owing to the high electric current density,
which guarantees a high fusion rate. Moreover, this welding
method has been increasingly used because of advantages
such as the quality of the deposited material and the excellent
appearance of the weld beads. Owing to their high corro-
sion resistance, stainless-steel claddings are widely used in

industrial equipment over carbon-steel claddings. In most
cases, the materials suffer wear under severe conditions of
use in harsh environments, often requiring restorations and
maintenance using stainless weld metals.

Several FCAW applications already exist in the literature,
most of which focus on bead microstructure and material
properties. On the other hand, certain studies were aimed
toward the analysis and optimization of other process outputs.
Kumar et al. [21] investigated the interaction effects between
the process parameters of FCAW on the hardness and bead
geometry of cladded plates on super duplex stainless steel.
The hardness values increased when the maximum wire feed
rate and maximum welding speed were used owing to the
dilution rate of the feed wire. In addition, the bead width
and reinforcement were improved by using the minimum
wire feed rate and minimum welding speed. Kannan and
Yoganandh [22] followed a central composite design (CCD)
to obtain mathematical models of bead geometry character-
istics in austenitic stainless-steel claddings deposited by the
gas metal arc welding process. Li et al. [23] applied the
Taguchi experimental design to optimize the bead geome-
try by varying certain controlled machine parameters of an
FCAW process. In their work, Balan et al. [24] optimized
the bead geometry using a simulated annealing technique.
Shao et al. [25] optimized the welding stress and deformation
by varying the electric current, voltage, and the welding speed
using the design of experiments (DOE), which is a strategy
for modeling experiments using statistical and mathematical
techniques [26]. Gomes et al. [19] studied a FCAW process
for stainless-steel claddings. An experiment was conducted
following a CCD to evaluate the influence of four controlled
input variables on the geometry, productivity, and quality
responses of interest. In addition, there are recently published
studies in IEEE Access that address this type of methodol-
ogy [27]–[29]. However, none of the aforementioned studies
considered the natural variability of the process. Such consid-
eration is important because the bead geometry is not uniform
even in automatic welding. As a result, The optimization of
only the expected values of the bead characteristics does not
guarantee a robust process.

Considering the correlated nature of the response variables
presented in the FCAW process, it is necessary to use multi-
variate strategies in this study.

B. RESPONSE SURFACE METHODOLOGY
In the industry, typically, the relationships between a set
of outputs and the decision variables are unknown [30].
One of the manners to overcome this problem is to use the
RSM [31]. In this method, a designed experimental array is
followed to obtain real data on the process under analysis.
Then, the results are used to define an analytical model that
depends on the decision variables of each of the outputs.
The CCD is a typical experimental array used to define
the experiments. Then, second-order polynomial models are
often used to build RS models f (x), [32]–[34], and are
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expressed as in (1):

f (x)∼β0+
k∑
i=1

βixi+
k∑
i=1

βiix2i +
∑
i<j

∑
βijxixj + ε=z′β+ε,

(1)

where f (x) is the response model, βi, βii, and βij are the coef-
ficients to be estimated; xi represents the decision variables
of vector x′ = [x1, x2, . . . , xk], k is the number of input
variables, and ε is the error observed in the response. Vector
β ′ = [β1, . . . , βp] of coefficients is estimated using the
ordinary least-squares (OLS) regression method [35]. This
methodology has been extensively used in [27], [36], [37].

If the models present adequate adjustments and residuals,
a multiobjective optimization problem may be formulated.
For this purpose, there are various techniques available in the
literature. One of them is referred to as the weighted-sums
(WS) method and it will be described in Section 2.2. After the
problem has been formulated, an algorithm is used to search
for the optimal solution. The generalized reduced gradient
(GRG) algorithm is often used when polynomial analytical
models represent the responses of interest [4].

C. STOCHASTIC PROGRAMMING
The input variables, responses of interest, and certain other
parameters involved in real-world design problems have a
random (or stochastic) character [3]. SP is a strategy used
in the formulation of optimization problems to build objec-
tive functions and constraints whose coefficients or decision
variables are described by random variables [38]. SPmethods
provide an important approach to linear programming under
uncertainty which started in the 1950s and continues to be
widely used up to present [39]. The stochastic problem can
be remodeled as a deterministic one after considering the
variability of the functions [40].

Different SP approaches have been published in the liter-
ature [9]. For instance, Liu et al. [41] developed a stochastic
model, referred to as the inexact two-stagewastemanagement
(ITWM) model, for the planning of the long-term municipal
solid waste management in the city of Changchun, China.
In their approach, probability levels were used in the objec-
tive function in a two-stage stochastic programming model.
Lindenschmidt and Rokaya [42] presented a method for the
estimation of the probable maximum staging from the ice-
jam floods. The idea was based on a deterministic hydraulic
model with a stochastic framework.

Another widely used method is the CCP [16]. It refers to
the formulation of an optimization problem, in which at least
one constraint consists of a minimum value or an acceptable
range for the probability function. Using the CCP and some
other methods, Diaz-Garcia [6] proposed different strategies
to formulate a multiobjective optimization problem using SP.
One of them was the maximization of the probability that a
response is within a predetermined level range. For instance,
let Y be a response of interest. In each test, Y is measured
k times. Therefore, E[Y ] is the Y ’ expected value of a run

and sY is its standard deviation for the test. After all tests
have been conducted, E[Y (x)] can be expressed as (1); the
standard deviation of E[Y ] can be estimated using σȲ =
s̄y
/
c4 as an alternative to the variance from the regression

model. However, in multiobjective problems, this probability
is multivariate; therefore, the possible correlations among the
responses of interest must be considered. If the means of the
response is, as per usual, normally distributed, the MNDmay
be used.

D. MULTIVARIATE NORMAL DISTRIBUTION
The MND is an extension of the univariate distribution.
For the case of a single variable with µ = E [x] and σ 2

=

Var(x), the probability density function is expressed as (2):

f (x) =
1

√
2πσ 2

e−
1
2 q(x), x ∈]−∞,∞[, (2)

where q (x) = (x − µ)
(
σ 2
)−1

(x − µ). In (2), it may be
noticed that q(x) determines how far x is from µ in the scale
of one standard deviation. According to Johnson [43], such a
distance may be extended when x is a vector of the current
values of the variables, i.e., when x = [x1x2 . . . xn]′n×1,
with n ≥ 2. Then, µ = [µ1µ2 . . . µn]′nx1 is the vector of
the expected values for each variable in x, and 6nn is the
corresponding definite positive variance–covariance matrix.
Then, we have

Qp(x) = (x− µ)′6−1p (x− µ). (3)

Equation (3) refers to the square distance between x andµ.
Therefore, the multivariate normal probability density func-
tion is defined as

Fp(x) =
1

(2π )p/2 |6|1/2
e−

1
2Qp(x), (4)

where xi ∈]−∞,∞[ for i = 1, 2, . . . , n.

E. WEIGHTED SUMS
The WS method has received attention owing to its imple-
mentation in multiobjective problems in different areas
[2], [44]. WS consists of an agglutination technique that
creates a global function as a linear combination—aweighted
sum—of the individual objective functions in the problem.
As shown in (5), a vector, f ′(x) = [f1(x)f2(x) . . . fm(x)],
composed by m objective functions is multiplied by a vector
of weights, w′ = [w1w2 . . .wm], where 0 ≤ wi ≤ 1,
i = 1, 2, . . . ,m and

∑n
i=1 wi = 1.

Min
x

w′f(x) =
m∑
i=1

wifi(x),

s.t. : hi(x) = 0, i = 1, 2, . . . , l,

gi(x) ≤ 0, i = 1, 2, . . . , p, (5)

where hi(x) and gi(x) are the equality and inequality con-
straints, respectively. Because the outputs may have signif-
icantly different scales, they can be normalized according to
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TABLE 1. Chemical composition of base metal and filler metal

the payoff matrix, 8, which is defined in (6) [45]:

8(m×m) =



f ∗1
(
x∗1
)
. . . f1

(
x∗i
)
. . . f1(x∗m)

...
...

...

fi
(
x∗1
)
. . . f ∗i

(
x∗i
)
. . . fi

(
x∗m
)

...
...

...

fm
(
x∗1
)
. . . fm

(
x∗i
)
. . . f ∗m

(
x∗m
)

 , (6)

where x∗i represents the vector of input variables that opti-
mizes fi(x); f ∗i (x

∗
i ) refers to the optimal value of the response,

also known as the utopia value. The main diagonal of8 con-
sists of utopian values. The remaining values are non-optimal;
the worst of them regarding each response are referred to as
Nadir values. Utopian and Nadir values are used to normalize
the objective functions so that they all have the same scale.
The normalized objective functions are obtained by (7):

fi(x) =
fi(x)− f Ui
f Ni − f

U
i

, i = 1, . . . ,m, (7)

where f Ui is the utopian value of response i and f Ni is the
Nadir value. After normalizing the objective functions, the
multiobjective optimization problem can be written as (8).
The problem is solved for different combinations of w and
the solutions of the objective functions compose the Pareto
boundary.

Min
x

w′F(x) =
m∑
i=1

wifi(x)

s.t. : hi(x) = 0, i = 1, 2, . . . , l

gi(x) ≤ 0, i = 1, 2, . . . , p (8)

F. GENERALIZED REDUCED GRADIENT (GRG)
Once the optimization problem has been formulated, the aim
is to find the optimal solution. To achieve this, several search
algorithms have been developed [46]. For instance, when
the response surface models are second-order polynomials,
the optimal solution corresponds to the stationary point of the
fitted surface or to the point that is closest to the stationary
one, depending on the experimental region.

Among the search algorithms, the GRG is one of the most
efficient methods for constrained optimization. GRG reduces
the number of variables by substituting the constraints of the
objective functions. Therefore, the number of gradients is
reduced [4].

The first stage of the GRG method is the classification of
the original variables into basic ones, namely Z (or depen-
dent) and non-basic Y (or independent). Let F(x) = F(Z,Y)

and h(x) = h(Z,Y) be functions of variables Z and Y.
To guarantee the optimality condition, it is necessary that
dhj(x) = 0. Thus, if A = ∇Zhj(x) and B = ∇Yhj(x),
then dY = −B−1AdZ. Finally, the gradient, GR, is
expressed as (9).

GR =
d
dZ

F(x) = ∇ZF(x)−
[
B−1A

]′
∇YF(x)′ (9)

The search direction is given by Sx = [−GRdY]′. To verify
whether a potential solution xk+1 is, in fact, satisfactory and if
h
(
xk+1

)
= 0, the increment at each step, xk+1 = xk+αSk+1,

can be used. Finally, using a one-dimensional algorithm of
search, such as the Newton method, it is possible to obtain
the solution of F(x).

III. MATERIALS AND METHOD
A. EXPERIMENTAL DESIGN
Experiments were conducted using the ESAB AristoPower
460 welding machine, the AristoFeed 30-4 W MA6 module
(employed to feed the wire), and a mechanical system device
to control the welding speed, torch distance, and torch angle,
which was defined as 15◦ to ‘‘pushing’’. The base metal was
AISI 1020 carbon steel cut into plates of 120 mm× 60 mm×
6.35 mm. The filler metal was a flux-cored stainless-steel
wire of type AWS E316LT1-1/4, with a diameter of 1.2 mm
and a linear density of 7.21 g/m. The chemical compositions
of the materials are listed in Table 1.

Amixture of 75%Ar+ 25%CO2 was used as the shielding
gas at a flow rate of 16 L/min. The welding technique used in
the experiments was bead-on-plate, setting the input variables
according to the selected DOE. The input variables were the
wire feed rate (Wf ), voltage (V ), welding speed (S), and the
distance from the contact tip to the work piece (N ). Following
a CCD, 31 experiments were conducted: 16 factorial points,
8 axial points, and 7 center points. The parameter levels were
established according to Gomes et al. [47] based on previous
tests and are summarized in Table 2.

The samples were cut at four different points along
the specimens, as shown in Fig. 1a; their cross sections
were attacked with nital solution (4%) and were then pho-
tographed. The Analysis Docr software was used to mea-
sure (in mm) the bead width (W ), penetration (P), and
reinforcement (R). The penetration area (Ap) and the total
area (At ) of the weld were measured in mm2 and are
shown in Fig. 1b. Then, the dilution percentage (D) was
obtained by calculating Ap/At , as shown in Fig. 1b. Table 3
lists the results of the experiments regarding the measured
responses.
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TABLE 2. Input variables and levels

TABLE 3. Experimental runs and results of the measured outputs

IV. RESULTS AND DISCUSSION
A. RESPONSE SURFACE MODELS
The five output variables listed in Table 3 were modeled
using experimental data and the general second-order poly-
nomial model presented in (1). The coefficients in vector
β were estimated using the OLS algorithm. In this study,
(10) through (13) present the obtained RMSs, for which
the adjusted R-squared were 97.98%, 91.86%, 83.24%,

and 93.43%, respectively.

E [W (x)] = 10.7+ 0.8x1 + 0.66x2 − 1.45x3 − 0.63x4
− 0.0033x21 − 0.02x22 + 0.26x23 − 0.04x24
+ 0.27x1x2 − 0.11x1x3 − 0.03x1x4 − 0.1x2x3
− 0.01x2x4 + 0.07x3x4 (10)

E [R(x)] = 2.59+ 0.19x1 − 0.11x2 − 0.22x3 + 0.12x4
+ 0.01x21 + 0.04x22 + 0.02x23 + 0.04x24
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FIGURE 1. a) Welding bead cuts; b) bead geometry and parameters.

− 0.03x1x2 − 0.02x1x3 − 0.02x1x4 − 0.01x2x3
+ 0.02x2x4 − 0.01x3x4 (11)

E [P(x)] = 1.62+ 0.12x1 + 0.12x2 + 0.09x3 − 0.24x4
+ 0.03x21 − 0.03x22 − 0.12x23 + 0.02x24
+ 0.03x1x2 + 0.08x1x3 − 0.1x1x4
+ 0.00019x2x3 + 0.01x2x4 + 0.01x3x4 (12)

E [D(x)] = 31.22− 0.28x1 + 2.49x2 + 3.68x3 − 4.25x4
− 0.23x21 − 0.74x22 − 1.25x23 + 0.03x24
+ 0.77x1x2 + 0.5x1x3 − 0.42x1x4 + 0.23x2x3
− 0.2x2x4 − 0.77x3x4 (13)

B. VARIANCE ESTIMATIONS
In each experimental run, the results of W , R, P, and D
were measured four times. The standard deviations were
considered deterministic and were obtained using σȲ =
s̄y
/
c4, as described in Section 2.3. For n = 4 observations,

we obtained c4 = 0.921. Table 4 and 5 list the standard
deviations of the responses and the correlations between each
pair of responses, respectively.

TABLE 4. Standard deviations of each response of interest

TABLE 5. Correlations between pairs of responses

C. MULTIOBJECTIVE OPTIMIZATION PROBLEM
Equation (14) presents the optimization problem for this
application.

Max F(x) = wE[W (x)]+ (1− w)E[R(x)]

s.t. : X′X ≤ ρ2 = 4

ϕ [P(x) ≤ USLP ∩ D(x) ≤ USLD] ≥ 95% (14)

The aim of this application was to maximize the responses
of interest related to the process productivity, being sub-
jected to maximum values of the critical quality (CTQ)
characteristics.

As presented in Fig. 1a and b, all responsesW , R, P, andD
relate to the bead geometry. For the stainless-steel claddings,
W is also related to the process productivity because higher
values of the bead width would require less steps to cover the
same surface area. The same productivity issue applies to the
reinforcement (R), which is also linked to the protection of
the surface under the stainless-steel layer. In addition, both R
and W were measured in mm; therefore, their agglutination
function, F(x), did not require their normalization.
The remaining results, namely P and D, are the CTQs

of this process. A small penetration (P) and low dilution
percentage are desired for the cladding process. According
to the specialist of the present study, the penetration should
remain below USLP = 1.5 mm, with a dilution lower than
USLD = 25%, to guarantee that the bead presents a satis-
factory and functional geometry. Higher values of P and D
would compromise the quality of the cladding.

In (14), ϕ[P(x) ≤ USLP∩D(x) ≤ USLD] is the probability
of bothP andD remaining below their USLs. This probability
is obtained using (4), which was presented in Section 2. For
n = 2, as is the case in this study, we have

62 =

[
σ 2
1 σ 12

σ 12 σ 2
2

]
. (15)

Since the correlation between x1 and x2 is

ρ =
σ12

σ1σ2
↔ σ12 = ρσ1σ2, (16)

we have

6−12 =
1

σ1σ2(1− ρ2)

[
σ 2
2 −σ12

−σ 12 σ 2
1

]
; (17)

therefore,

Q2 (x1, x2) =
1

1− ρ2

[(
x1 − µ1

σ1

)2

+

(
x2 − µ2

σ2

)2

− 2ρ
(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)]
. (18)
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TABLE 6. Results of the Optimization Problem in (14)

FIGURE 2. Bivariate normal distribution of P and D.

Consequently, the bivariate normal distribution is
given by (19).

F2 (x1, x2) =
1

2πσ1σ2
√
1− ρ2

e−
1
2Q2(x1,x2) (19)

Fig. 2 shows the bivariate normal distribution and the
probability density of P and D.

FIGURE 3. Pareto boundary of the problem in (14).

D. MULTIOBJECTIVE OPTIMIZATION PROBLEM
Equation (14) was solved in different weighting sets. Table 6
lists all the results. Fig. 3 presents the Pareto boundary for
21 different weighting sets from 0 to 1 with 0.05 incre-
ments. As may be observed, in Fig. 3, the points at the
bottom right corner are very close to each other. They were
obtained by solving (14) for w ≥ 0.6. The stochastic con-
straint becomes active for the aforementioned weighting sets;
therefore, the algorithm becomes more limited in finding the
optimal solutions.
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The results obtained in the present study were compared
with those of Gomes et al. [19]. These authors carried out a
deterministic multivariate optimization using the same data
set summarized in Table 3. In their approach, they used
principal component analysis (PCA), which is a method
that reduces the dimensionality of extense and correlated
data [14]. The PCA approach was integrated to the mean
square error (MSE) optimization method.

Based on individual optimizations, Gomes et al. [19]
defined that the targets for the geometrical responses of inter-
ests were the following:W = 15.57 mm, R = 3.34 mm, P =
0.83 mm, and D = 16.27%. The optimal solution achieved
by using the PCA–MSE strategy was: W = 8.99 mm, R =
2.87 mm, P = 1.45 mm, and D = 25.88%.
After analyzing the behavior of the Pareto-optimal solu-

tions obtained in the present study, it is possible to observe
that the results of the proposed multivariate stochastic opti-
mization method are slightly closer to the targets established
in the work of Gomes et al. [19]. It is important to state that
in their work, additional responses of interest were included
to the optimization problem, not only the geometric charac-
teristics of this welding process.

V. CONCLUSION
In this work, we aimed to optimize a FCAW process used in
the manufacturing of stainless-steel claddings. The authors
proposed the use of stochastic programming and multivariate
statistics to include the variability of the geometry character-
istics to the optimization problem. The main results were the
following.
• The standard deviations of the expected values of the
responses were estimated from the measurements of
different sessions of the bead of each experimental
run. After conducting Anderson–Darling goodness-of-
fit tests, the normal distribution was considered an
appropriate representation of the data.

• The WS method was efficient in determining a Pareto
boundary for the multiobjective optimization problem.
The normal boundary intersection (NBI) method was
also tested; however, it could not define a Pareto
boundary for w ≥ 0.6. The NBI could not con-
verge after the multivariate stochastic constraint became
active.

• The multivariate stochastic constraint of the optimiza-
tion problem was active for certain weighting sets
present in the Pareto boundary, which approximated the
solutions when w ≥ 0.6.

• To obtain the desired results, it was important to con-
sider the correlation between the penetration (P) and
the dilution (D). If P and D were considered indepen-
dent, the error in the multivariate probability would be
significant.

As future research, the authors suggest that the comparison
between the variance present in the RSMs and the variance
of the real measured data be included in the solution of the
optimization problem.
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