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ABSTRACT DMAIC (define, measure, analyze, improve and control) is one of the most utilizedmethods for
guiding practitioners in the decision-making process of quality improvement projects. Industrial processes
commonly deal with multiple critical-to-quality (CTQ) characteristics. When these characteristics are
correlated, multivariate statistical techniques should be applied. This paper aims to propose a domain-
specific Six Sigma method, the MDMAIC (multivariate DMAIC). The new stepwise procedure helps
practitioners not only to reduce problem dimension but also to take account of the correlation structure
among CTQs during the decision-making process. Principal component analysis has been applied for
assessing the measurement system, analyzing process stability and capability, as well as modeling and
optimizing multivariate manufacturing processes. A hardened steel turning case has been presented for
proposal validation. The result analysis has shown that the MDMAIC was very successful in leading the
practitioner during the steps and phases of the quality improvement project. The multivariate capability
index of the enhanced process emphasized the substantial economic improvement.

INDEX TERMS Six sigma, dmaic, quality improvement, principal component analysis, multiobjective
optimization.

I. INTRODUCTION
Continuous improvement has been implemented to sev-
eral firms as a quality management strategy due to its
capacity of providing higher competitive advantages [1]–[3].
Currently, Six Sigma has been adopted as a refined con-
tinuous improvement philosophy to improve organizational
efficiency and customer satisfaction by decreasing operating
costs and increasing profits [4]–[6]. It is defined by Linder-
man et al. [7] as an organized and systematic methodology for
not only improving a strategic process but also developing
new products and services. By this methodology, the sig-
nificant reductions in defect rates are often achieved using
statistical and scientific methods.

Initially used as a method to reduce variation, DMAIC
(define, measure, analyze, improve and control) has been
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implemented in practice as a generic approach for problem
solving [5], [8], [9]. This method is, as any other problem
solving approach, subjected to power/generality trade-off,
which has first resulted in the evolution towards a more
generality and later into a large number of domain-specific
adaptations. De Mast & Lokkerbol [10] have concluded
that DMAIC method is applicable to a wide range of
well-structured and semi-structured problems. It serves as
routine to organize problems, in order to turn them into well-
structured problems.

Several researches have applied the DMAIC method as
structured procedure to solving manufacturing problems with
multiple CTQs. Some manufacturing applications are sum-
marized as follows: automotive [11]–[14], casting [15], direct
selling [16], extrusion [17], iron ore [18], printed circuit
boards [19], [20], textile [21], [22], touch panel [23], white
goods [24], services [1], [25], [26] and education [27].
In addition to the aforementioned papers, the book ‘‘World
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FIGURE 1. MDMAIC’s phases and steps.

class application of Six Sigma: real world examples of suc-
cess’’, by Antony et al. [28], brings other interesting manu-
facturing applications. A worth mentioning paper is Chang
et al. [29], which describes the application of a Six Sigma
project, using DMAIC, for integrating statistical process con-
trol (SPC) to engineering processes control. In the analyze
phase, the authors have used multivariate control charts,
Hotelling T2, to evaluate six quality characteristics of a cur-
ing process of high-pressure hose products. However, a Six
Sigma project, in fact, cannot be restricted to SPC techniques.

Taking into account that industrial processes commonly
deal with multiple critical-to-quality (CTQ) characteris-
tics [14], few researches have been conducted using
multivariate approaches and DMAIC procedure to solving
manufacturing problems. In such complex systems, the cor-
relation among CTQs cannot be neglected due to its influence
on the optimization results [30]. This effect destabilizes the
mathematical models producing errors in the regression coef-
ficients. As a result, estimated models are unable to represent
the objective or constraint functions properly [31]–[34].

This research aims to propose a domain-specific DMAIC,
the MDMAIC (Multivariate: Define, Measure, Analyze,
Improve, Control), to solving manufacturing problems with
multiple correlated CTQs. Principal component analy-
sis (PCA) has been utilized for integrating a multivariate
approach to the Six Sigma method.

II. MULTIVARIATE SIX SIGMA METHOD
The generic Six Sigma’s stepwise strategy proposed
by De Koning & De Mast [8] has been modified to
conceive a method for dealing with multivariate pro-
cesses. Fig. 1 presents the proposed multivariate method,
the MDMAIC. In the following subsections are shown PCA
and the main multivariate statistical techniques, based on
PCA, in MDMAIC method.

A. PRINCIPAL COMPONENT ANALYSIS
PCA has been extensively used to summarize the com-
mon patterns of variation among variables [35], [36]. Alge-
braically, PCA is a linear combination ` of q random
variables CTQ1,CTQ2, . . . ,CTQq. Geometrically, these
combinations determine a new coordinate system when rotat-
ing the original system [37], [38]. The coordinates of the axes

now have the variables CTQ1,CTQ2, . . . ,CTQq and repre-
sent the direction of the maximum. The principal components
are uncorrelated and depend only on the variance-covariance
matrix 6, or the correlation matrix R, of original vari-
ables. PCA development does not require the assumption
of multivariate normality. PCA provides pairs of eigenvalues-
eigenvectors (λ1, e1) , (λ2, e2) , . . . ,

(
λq, eq

)
, where λ1 ≥

λ2 ≥ . . . ≥ λq ≥ 0 are eigenvalues for obtaining percent-
age of explanation for each principal component and ei are
eigenvectors for estimating the component scores using (1).

PCi=eTi CTQ=e1iCTQ1+. . .+eqiCTQq i=1, 2, . . . , q

(1)

B. DEFINE PHASE
Initially, the relevant process should be mapped in order
to provide the same level of knowledge for the project’s
team. SIPOC (suppliers-input-process-output-customers) is a
simple and useful tool for identifying suppliers, inputs, the
high-level process flow, outputs, and customers. Moreover,
the project charter should be created, stating the problem,
objectives, goals, scope, schedule, team, and potential finan-
cial benefits of the project [28].

C. MEASURE PHASE
1) SELECT CTQS AND VALIDATE MEASUREMENT SYSTEM
After selecting the critical-to-quality characteristics (CTQ),
the measurement system should be validated. ANOVA (anal-
ysis of variance) method for GR&R studies can be applied
only to univariate data. In dealing with multiple corre-
lated CTQs, multivariate methods are more suitable for
estimating the evaluation indices of these measurement sys-
tems [36], [39], [40]. A multivariate GR&R model using q
quality characteristics, p parts, o operators, and r replicates
can be written as (2) [36], [40]:

PCl = µ+ αi + βj + (αβ)ij + εijk


i = 1, 2, . . . , p
j = 1, 2, . . . , o
k = 1, 2, . . . , r
l = 1, 2, . . . , q

(2)

where µ is a constant and αi, βj, (αβ)ij, εijk are indepen-
dent normal random variables with zero mean and variance,
σ 2
α , σ

2
β , σ

2
αβ , andσ

2
ε , for part-to-part (process), operator, part

∗

operator interaction, and error term, respectively. Similarly
to a univariate model, these variance components can be
translated into GR&R notation as (3):

σ 2
P = σ

2
α , σ 2

repeatability = σ
2
ε , σ

2
reproducibility = σ

2
β + σ

2
αβ

σ 2
MS = σ

2
repeatability + σ

2
reproducibility, σ 2

T = σ
2
P + σ

2
MS (3)

After variance components have been calculated for a
multivariate GR&R study, R&RPCi and ndcPCi indices for
v (withv ≤ q) principal components can be estimated by
using (4) and (5). Then, multivariate evaluation indices can
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be agglutinated as (6) and (7):

%R&RPCi =
(
σMS;PCi

σT ;PCi

)
100% ∀i = 1, 2, . . . , v (4)

ndcPCi =

√√√√ 2σ 2
P;PCi

σ 2
MS;PCi

=
√
2
σP

σMS
∀i = 1, 2, . . . , v

(5)

%R&Rm =

[
v∏
i=1

%R&RPCi

]1/v
(6)

ndcm =

[
v∏
i=1

ndcPCi

]1/v
(7)

2) CURRENT PROCESS CAPABILITY
Process capability indices have been widely used to deter-
mine supplier’s ability to deliver quality products [41].
Nevertheless, it is only recommended that the capability be
evaluated when the process is under statistical control. Con-
trol charts are statistical tools commonly applied to assess
process stability.

According to Montgomery [42], Hotelling T2 is the most
familiar procedure for monitoring and controlling the mean
vector of the process. Using i = 2, 3 . . . , n sample size,
j = 1, 2, . . . , q quality characteristics and k = 1, 2, . . . ,m
subgroups, the test statistic T 2 is given by:

T 2
= n

(
CTQ− CTQ

)T
S−1

(
CTQ− CTQ

)
(8)

where, CTQ is the mean of CTQijk values, CTQ is the mean
vector of CTQj (mean of CTQjk values), and S is the sample
covariance matrix.

For retrospective analyses (phase 1), control limits for the
T 2 control chart can be estimated as follows:

UCL =
q (m− 1) (n− 1)
mn− m− q+ 1

Fα,q,mn−m−q+1

CL =
q (m− 1) (n− 1)
mn− m− q+ 1

F−1q,mn−m−q+1 (0.5)

LCL = 0 (9)

where F represents the F distribution.
Process variability can be monitored by the sample gener-

alized variance, |S|. This statistic, which is the determinant
of the sample covariance matrix, can be used as a measure of
multivariate dispersion [42]. Control limits for |S| would be:

UCL =
|S|
b1

(
b1 + 3b1/22

)
CL = |S|

LCL =
|S|
b1

(
b1 − 3b1/22

)
(10)

where

b1 =
1

(n− 1)q

q∏
j

(n− j) (11)

and

b2=
1

(n− 1)2q

q∏
j=1

(n− j)

[ q∏
r=1

(n− r + 2)−
q∏

r=1

(n− r)

]
(12)

In (10), if the calculated LCL is less than zero, the lower
control limit is assumed to be zero.

Taking consideration of in-control systems, process capa-
bility indices (PCIs) provide numerical measures of whether
or not a manufacturing process is capable to meet a predeter-
mined level of production specification [41], [43]. Cp, Cpk,
Cpm and Cpmk are the most used PCIs and are calculated as
such:

Cp =
USL − LSL

6σ
(13)

Cpk=min

{
USL − CTQ

3σ
,
CTQ− LSL

3σ

}
=
d−

∣∣CTQ−M ∣∣
3σ

(14)

Cpm =
USL − LSL

6
√
σ 2 +

(
CTQ− T

)2 (15)

Cpmk =min

 USL − CTQ

3
√
σ 2 +

(
CTQ− T

)2 , CTQ− LSL

3
√
σ 2+

(
CTQ−T

)2


=
d−

∣∣CTQ−M ∣∣
3
√
σ 2+

(
CTQ−T

)2 (16)

where USL and LSL are the upper and lower specification
limits respectively, T is the target value, CTQ is the process
mean, σ is the process standard deviation, M = (USL +
LSL)/2 is the mid-point of the specification interval and d =
(USL−LSL)/2 is the half length of the specification interval.

For the multivariate case, (1) is used to determine the
specification limits of the ith principal component [42]:

LSLPCi = eTi LSL USLPCi = eTi USL TPCi = eTi T (17)

where LSL, USL and T must be standardized specification
limits if correlation matrix is used.

Wang & Chen [44] proposed the MPCIs (multivariate pro-
cess capability indices) MCp, MCpk, MCpm and MCpmk as
follows:

MCpk =

 ξ∏
i=1

Cpk;PCi


1/v

(18)

where

Cpk;PCi = min

{
USLPCi − PCi

3σPCi
,
PCi − LSLPCi

3σPCi

}

=
d −

∣∣PCi −M ∣∣
3σPCi

(19)
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TABLE 1. Analysis of variance table for crossed study with two factors.

is the univariate measure of capability for the ith principal
component, σPCi =

√
λi and v denotes the number of princi-

pal components used to assess the capability. Similarly, they
defined MCp, MCpm and MCpmk by replacing Cpk;PCi with
Cp;PCi, Cpm;PCi, Cpmk;PCi, respectively, for i = 1, 2, . . . , v.

D. ANALYZE PHASE
In this phase, key process variables that cause defects should
be identified. Design of experiments (DOE) along with
hypothesis testing, analysis of variance (ANOVA) and Pareto
chart are effective statistical tools for process modeling and
optimization [45]. In order to determine which factors are
statistically significant, the analysis of variance in Table 1 can
be estimated.

Where a is the number of levels in factor A; b is the number
of levels in factor B; n is the number of observations; p is the
number of factors; PCi.. is the mean of the ith level of factor
A; PC... is the overall mean of principal components; PC.j.
is the mean of the jth level of factor B; PCijk is the principal
component at the ith level of factor A, jth level of factor B, and
k th replicate; and PCij. is the mean of the ith level of factor A
and jth level of factor B.

After estimating each component in the ANOVA table,
each factor and interactions are evaluated by p-values taking
0.05 as significance level. After the screening stage, designs
that are more comprehensive should be implemented in order
to build a mathematical model and then finding the factor
settings that produce optimal process performance [45].

E. IMPROVE PHASE
1) QUANTIFY RELATIONSHIP BETWEEN XS, CTQS AND PCS
After ‘‘the vital few’’ controllable factors have already been
identified, response surface methods are useful designs for
process optimization. If there is curvature in the experimental
region, the approximating function, such as the second-order

model in (18), is usually employed [35].

ctq = β0 +
k∑
i=1

βixi +
k∑
i=1

βiix2i +
∑
i<j

∑
βijxixj + ε (20)

where β is the polynomial coefficient, x is controlled factors,
k is the number of factors and ε is the random error term.
The ordinary least squares (OLS) method is utilized to

estimate β coefficients by using:

β̂ =
(
XTX

)−1
XTCTQ (21)

where X is the matrix of independent variables and CTQ is
the dependent variable. Curvature is assessed by the analysis
of center points in the experimental design. Using (1), v
principal components can also be fitted by a second-order
model according to Eqs. (20) and (21).

2) OPTIMIZE PROCESS THROUGH PCS
According to Montgomery & Woodall [46], one of the main
features of Six Sigma is the focus on variability reduction
around the process’ target. This information can be translated
into MOOP as MSE (mean square error) functions for simul-
taneous optimization of mean and variance. The multivariate
version of mean square error functions (MMSE), based on
PCA, can be written as such [38], [47]:

Minimize: MMSEv =

[
v∏
i=1

(MMSEi |λi ≥ 1 )

]1/v

=

{
v∏
i=1

[(
PCi − TPCi

)2
+ λi |λi ≥ 1

]}1/v
Subject to: XTX ≤ ρ2 (22)

where

PCi = β0 +
k∑
i=1

βixi +
k∑
i=1

βiix2i +
∑
i<j

∑
βijxixj (23)

VOLUME 8, 2020 34249



R. S. Peruchi et al.: Integrating Multivariate Statistical Analysis Into Six Sigma DMAIC Projects

TABLE 2. Multivariate GR&R dataset.

and TPCi is the target value of the ith principal component
calculated by Eq. (17). Optimum values can be obtained by
finding the stationary point of the multivariate fitted surface.
The objective is to obtain X∗ that can minimize not only the
distance of expected mean (PCi) from the target (TPCi ) but
also the process variability (λi). The objective function is sub-
jected only to the experimental region of interest defined by
XTX ≤ ρ2. For a central composite design, a logical choice
is the experimental axial distance [35], [38]. To solve this
constrained nonlinear optimization system, GRG (general-
ized reduced gradient) is one of the most robust optimization
algorithms [47], [48]. Validation experiments are required to
verify whether the optimal solution is feasible.

F. CONTROL PHASE
Before implementing ongoing measures and actions to sus-
tain improvement, process capability analysis must be con-
ducted in order to check the optimized process capability.
Finally, a phase 2 control chart study can be used for monitor-
ing the mean vector of future production. The control limits
are as follows [42]:

UCL =
q (m+ 1) (n− 1)
mn− m− q+ 1

Fα,q,mn−m−q+1

CL =
q (m+ 1) (n− 1)
mn− m− q+ 1

F−1q,mn−m−q+1 (0.5)

LCL = 0 (24)

III. NUMERICAL EXAMPLE
A. DEFINE PHASE
Hardened steel turning is a precision machining process
highly productive and cost effective [49]. In this dry turning
tests of the AISI 52100 steel (1.03% C; 0.23% Si; 0.35%
Mn; 1.40% Cr; 0.04% Mo; 0.11% Ni; 0.001% S; 0.01%),
a CNC lathe, with maximum rotational speed of 4000 rpm
and power of 5.5 kW, was operated. Wiper mixed ceramic
inserts (Al2O3+TiC, ISO code CNGA 120408 S01525WH),
coated with a very thin layer of titanium nitride (TiN,
Sandvik-Coromant GC 6050), was utilized. The workpieces,
made up with dimensions of Ø 49 mm × 50 mm, were
previously quenched and tempered. After the heat treatment,
hardness was measured between 49 and 52 HRC, up to a
depth of 3 mm below the surface. A tool holder with negative
geometry, ISO code DCLNL 1616H12 and entering angle

FIGURE 2. Overview of AISI 52100 hardened steel turning.

χr = 95◦, has been adopted. Fig. 2 illustrates the AISI
52100 hardened steel turning.

B. MEASURE PHASE
1) SELECT CTQS AND VALIDATE MEASUREMENT SYSTEM
Roughness parameters such as Ra (arithmetic average) are
widely used in most manufacturing processes for assessing
the quality of surface finishing of a work piece [39]. However,
Ra alone is incapable of describing a surface completely.
Hence, Ry (maximum roughness), which provides informa-
tion about the deterioration of the vertical surface part, has
also been adopted as a critical-to-quality characteristic.

To validate the measurement system, the multivariate
GR&R study used p = 10 parts, o = 1 operator, and r = 3
replicates (Table 2). A portable roughness checker, set to a
cut-off length of 0.25 mm, was utilized (Fig. 2).

Table 3 shows that PCA was applied to Ra and Ry rough-
ness parameters using the correlation matrix. PC1 explained
97.91% of total variation from original CTQs and was the
only principal component scores evaluated. These scores
were adjusted by using analysis of variance, according to the
model in (2). Table 4 presents the square root of variance
component for this multivariate GR&R study. (4) - (7) were
used to calculate themeasurement system’ evaluation indices.
%R&Rm = 7.74% and ndcm = 18 suggest that the measure-
ment system is deemed acceptable (guidelines for acceptable
measurement system: %R&Rm < 10% and ndcm > 5 [29]).

2) CURRENT PROCESS CAPABILITY
Before assessing process capability, control charts should be
used to verify process stability. Using (8)-(12), Fig. 3 shows
Hotelling T 2 and |S| control charts for checking mean and
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TABLE 3. Principal component analyses based on correlation matrices.

TABLE 4. Multivariate GR&R results.

FIGURE 3. Hotelling T2 and |S| control charts for baseline study.

covariance stabilities, respectively. As can be seen from these
charts, the multivariate process is under statistical control.

Turning now to the process capability analysis, Table 5
summarizes some descriptive statistics and specification lim-
its. Table 3 shows that PC1 explains 96.04% of total variation
from the original CTQs, so that PC1 was the only one prin-
cipal component considered. For this particular case, there
is only upper specification limits; thereby, MCpk has been
the only one multivariate process capability index estimated.
Specification limit for PC1 was calculated by using (17).
After that, (18) and (19) were used for obtaining the multi-
variate process capability index. MCpk = 0.66 determines
that about 2% of defects are expected in this multivariate
process. The goal is to increase this MPCI in order to obtain
at least 1.33.

C. ANALYZE PHASE
In this phase, influencing factors and causes that affect CTQs’
behavior are identified and the most significant ones are
selected. Table 6 presents the control variables with their

TABLE 5. Estimating the multivariate process capability index.

FIGURE 4. Main effects plot for PC1.

respective levels for building a central composite design.
It was adopted 8 corner points, 6 axial points, 5 center points
and ρ = 1.682 in this response surface design. The sequential
set of experimental runs was conducted and stored in Table 7.
Table 3 provides the PCA results with 98.29% of total varia-
tion accounting for the first principal component.

Before fitting a response surface model for PC1, analysis
of variance was assessed in order to identify the adequacy of a
full quadratic model. As can be seen from Table 8, there were
several non-significant terms included in the full quadratic
model. Additionally, Fig. 4 illustrates how significant each
factor was. It is essential to highlight that the most variation
in PC1 is due to the feed rate factor. In order to find the best fit
for this turning process, several models were analyzed, taking
account of lack-of-fit test, Anderson-Darling normality test
for residuals and adjusted coefficient of determination (R2Adj).
Non-significant impact on PC1 was provided by the cutting
speed factor. Therefore, this factor was removed from the
final reduced response surface model, as seen in Table 8.
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TABLE 6. Control factors and their respective levels.

TABLE 7. Central composite design.

D. IMPROVE PHASE
1) QUANTIFY RELATIONSHIP BETWEEN XS, CTQS AND PCS
Response surface models for Ra, Rt and PC1 were built
by using (18) and (19). The reduced models described in
(25) - (27) can be illustrated through contour and surface
plots. As shown in Fig. 5, low level of feed rate minimizes
the scores of PC1.

Ra= 0.656+0.405F+0.011D+0.058F2
−0.026D2 (25)

Ry= 2.676+01.527F+0.149D+0.511F2 (26)

PC1=−0.179+1.573F+0.095D+0.355F2
−0.105D2 (27)

2) OPTIMIZE PROCESS THROUGH PCS
Owing to the fact that PC1 is positively related to Ra and
Ry (see eigenvectors in Table 3), minimizing PC1 is the
same as minimizing both Ra and Ry. Therefore, the original
constrainedmulti-objective optimization problem can be sim-
plified by a constrained single objective problem, using (22)
and (23), as follows:

Minimize: MMSE1 =
(
PC1 − TPC1

)2
+ λ1

= [PC1 − (−1.864)]2 + 1.966

Subject to: XTX ≤ 1.6822 (28)

In this particular case, the target for each CTQ was
obtained from TCTQ = Min

X∈�
[CTQi (X)] where � denotes the

experimental region of interest defined by XTX ≤ 1.6822.

FIGURE 5. Contour and surface plots for PC1.

Applying the GRG algorithm into Eq. (29), the optimal set-
ting using coded units was (-1,480; -0,799) for this multi-
variate process. This solution (F = 0, 152 mm/rev and D =
0, 165mm – uncoded units), which attends all the constraints,
must be validated by a pilot test in order to compare the
optimized process capability to the baseline.

E. CONTROL PHASE
Hotelling T 2 and |S| control charts were applied, by using (8)-
(12), to verify mean and covariance stabilities, respectively.
As can be seen from Fig. 6, the multivariate process is in-
control. Assessing now process capability, Table 5 summa-
rizes some descriptive statistics and specification limits for
the validation test. Table 3 determines that PC1 explains
95.61% of total variation from the original roughness param-
eters, thus PC1 was the only one principal component taken
into account. Specification limit for PC1 was calculated by
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TABLE 8. Analysis of variance for PC1.

FIGURE 6. Hotelling T2 and |S| control charts for validation study.

using (17) andMCpk by using (18) and (19). According to the
index MCpk = 4.55, the probability of producing defective
parts was extremely reduced at levels lower than 0.00%.
Further, phase 2 control charts, using Eq. (21) as control limit,
could be applied for sustaining improvements.

Basically, the computational complexity of the proposed
method is increased by having to conduct PCA before per-
forming the other MSA, SPC, DOE and MOOP studies.
On the other hand, the reduction in dimensionality imposed
by PCA results in reduced computational efforts when con-
ducting the other studies of MSA, SPC, DOE and MOOP.
Thus, the number of principal components is usually smaller
than the original set of correlated variables.

Finally, this numerical example showed how to define,
measure, analyze, improve and control processes with mul-
tiple CTQs using Six Sigma/DMAIC and PCA. When evalu-
ating systems with multiple CTQs, univariate methods often
generate inconclusive results for validating measurement sys-
tems, determining process capability and defining the opti-
mum operating condition. Multivariate methods reduce the

size of the problem and provide conclusive results when
conducting MSA, SPC, DOE, and MOOP studies.

IV. CONCLUSIONS
Complex industrial processes generally deal with multiple
correlated critical-to-quality characteristics. Thus, multivari-
ate statistical techniques are required to measure, analyze,
improve and control such applications. Literature presents
several papers applying multivariate approaches to either
MSA, SPC, DOE or MOOP problems. Nevertheless, com-
bining these approaches with a well-structured procedure
is demanded to adequately solving problems of multivari-
ate manufacturing processes. The domain-specificMDMAIC
method was proposed to integrate contemporary multivariate
techniques into the decision-making process of Six Sigma
projects. The numerical example has shown how a multivari-
ate process can be properly assessed and optimized. Addi-
tionally, the following conclusions are addressed:
• PCA effectively reduced problem dimension while
applying the multivariate version of MSA, SPC, DOE
and MOOP techniques;

• According to the evaluation indices %R&Rm and ndcm,
the measurement system that assesses roughness param-
eters was validated by using the multivariate GR&R
study;

• Multivariate process capability indices were calculated
in order to determine the economic losses before and
after process improvement;

• The multivariate manufacturing process was enhanced
by adopting the successful RSM-PCA approaches cou-
pled with MSE functions for simultaneously optimizing
mean and variance of multiple correlated CTQs. The
MCpk has been increased from 0.66 to 4.55;

Finally, the numerical example of the hardened steel turning
process has shown that the MDMAIC method was consid-
ered efficient and effective in leading the practitioner to the
problem solution.
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