
lable at ScienceDirect

Renewable Energy 158 (2020) 628e641
Contents lists avai
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
Economic planning of wind farms from a NBI-RSM-DEA multiobjective
programming

Giancarlo Aquila a, Luiz C�elio Souza Rocha b, Paulo Rotela Junior c, *,
Joseph Youssif Saab Junior d, Jo~ao de S�a Brasil Lima d, Pedro Paulo Balestrassi e

a CNPq Fellow - Brazil (Project nº155507/2018-4), Federal University of Itajuba, Itajuba, MG, Brazil
b Federal Institute of Education, Science and Technology, North of Minas Gerais, Almenara, MG, Brazil
c Department of Production Engineering, Federal University of Paraiba, Joao Pessoa, PB, Brazil
d Maua Institute of Technology, S~ao Caetano do Sul, S~ao Paulo, Brazil
e Institute of Production Engineering and Management, Federal University of Itajuba, Itajuba, MG, Brazil
a r t i c l e i n f o

Article history:
Received 16 August 2019
Received in revised form
21 March 2020
Accepted 31 May 2020
Available online 5 June 2020

Keywords:
Energy planning
Wind farms
Multiobjective programming
Normal boundary intersection
Response surface methodology
* Corresponding author.
E-mail addresses: giancarlo.aquila@yahoo.com (G

(J.Y. Saab Junior), joao.brasil@maua.br (J. de S�a Brasil

https://doi.org/10.1016/j.renene.2020.05.179
0960-1481/© 2020 Elsevier Ltd. All rights reserved.
a b s t r a c t

One of the challenges of energy regulatory-agencies is to guide the agents decision-making process
towards maximization of the overall welfare of the electricity sector. However, this is not a simple task
since it requires meeting expectations of many stakeholders, from investors to consumers. This paper
proposes an optimization methodology aimed at helping define the optimal combination of wind farm
layout and type of equipment deployed, so that the electricity sector overall welfare is maximized in the
process. The optimization objectives are (i) the energy density and (ii) the Net Present Value (NPV), and
the parameters are (a) the power levels and (b) the selling price of the energy. The objective functions are
modelled with the aid of a design-of-experiment technique known as Response Surface Methodology,
relying on the multi-objective programming method of Normal Boundary Intersection for the optimi-
zation. The methodology is applied to four different scenarios arising from the combination of two
different locations (Santa Vit�oria do Palmar-RS and Macau-RN, both in Brazil), and two different wind
turbine manufacturers (A and B). The final step comprises the application of the Data Envelopment
Analysis technique in order to sort one from the set of optimal solutions identified by the four different
scenarios. The results show that the proposed methodology is capable of supporting bidding processes
and wind farms certification programs, in line with what should be expected by regulatory agencies,
investors and electricity consumers alike. The deployment of the methodology proved discriminant and
allowed selection of one final scenario (Macau-RN, brand A equipment) as overall optimal. It was also
observed that equipment efficiency is dependent on siting location.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The wind power growth impulse in Brazil started by the mid-
2000s, when the Brazilian government included wind energy in
the PROINFA, an incentive program for alternative energy sources,
and later, in the electricity auctions [1,2]. Thus, due to high wind
energy potential in some states combined with the incentives for
buying this source of energy and dedicated lines of financing from
the BNDES (National Bank for Economic and Social Development),
the wind energy started to increase its share in the Brazilian
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electricity matrix [3,4].
As a result, in June 2019 the Brazilian wind energy installed

capacity reached just over 15 GW, growing from a 2012 value of
2 GW [5,6]. Also, Brazilian wind farms have a high capacity factor,
reaching 42,2% in 2018 against a world average of 25% [7].

Wind power over Brazilian territory is currently estimated at up
to 500 GW [7] and at this time 14 States are providing wind energy
to the interconnected National electricity grid, with the largest
contributors being the States from Northeast and South Regions
[8,9]. However, since Brazil has continental dimensions, the wind
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distributions may present quite strong variability from one region
to another [9]. Also, wind turbines from different manufacturers
with the same approximate nominal power may display actual
power curves versus wind speed with significant differences.
Together, these variances of wind and equipment combine to make
the planning of wind farms quite complex, especially if solutions
are sought to maximize the welfare of the electricity sector, as
highlighted by ANEEL [10].

The benefits associated with the electricity converted from the
wind energy are many and include reduction of greenhouse-gas
(GHG) emissions and fossil fuel dependency [11,12]. However, like
any form of energy conversion, there are also some downsides that
must be minimized.

Wind farms belong to a group of energy conversion facilities
that demand the most terrain area for installed MW. In accordance
with Ramanathan [13], a typical wind farm requires 9,900 km2 per
installed GW, lagging behind only of biomass generation.

In this regard, large-size wind farms may impose significant
risks to the vicinity of the site, like restrictions to themobility of the
local community; aerodynamic and/or mechanical noise emission;
property damage deriving from excavation and nearby traffic of
large truckloads and heavy machinery necessary for the logistics
operations; deforestation; significant changes to the landscape and
local ecosystems [14,15].

Based upon the preceding arguments, the objective of the pre-
sent research is to propose a methodology in order to help the
economic planning of wind farms so that the requirement of wel-
fare maximization of the electricity sector is met. The novelty of
this study is the development of a method based on multiobjective
programming focused on individual wind power generation project
planning, considering quantitative and qualitative variables. In this
sense, the proposed method allows to solve a trade-off problem,
i.e., to reach the best solution of a problem with conflicting objec-
tives. In addition, the interaction between turbine brand charac-
teristics and site specific wind speed behavior was also verified.

For that purpose, the model is made up of an association of the
(i) Response Surface Methodology (RSM), (ii) the Normal Boundary
Intersection (NBI) optimization algorithm and (iii) Data Envelop-
ment Analysis (DEA) tool. The association of these three techniques
is also a novelty of this study to the literature related to the reso-
lution of energy planning problems. Thus, RSM allowsmodeling the
problem; NBI allows all ideal solutions, without prejudice to the
construction of the frontier; and DEA presents itself as a
subjectivity-free method to determine the best ideal solution for
the problem.

Energy density and Net Present Value (NPV) were considered
the response variables of the optimization problem, as they are
related to socio-environmental and economic aspects that maxi-
mize the welfare of the electricity sector. In this respect, a higher
energy density indicates the project’s ability to produce as much
electricity as possible, occupying the smallest space. Thus, site
degradation can be mitigated and an area preserved for other
productive activities without compromising the wind farm pro-
ductivity. In turn, a NPV above zero ensures the project’s profit-
ability to the investor, so that the energy selling price is as low as
possible, making the traded energy less costly to the end consumer.

From this point on, the paper is organized in the following
manner: in Section 2 a brief literature review is presented on
techniques applied to energy planning, including the multi-
objective optimization and other tools employed in the proposed
methodology; in Section 3 materials and methods are introduced;
in Section 4 the results and discussion are presented and; in Section
5, the conclusions are presented.
2. Literature review

2.1. Multi-objective optimization as a support to energy projects
and the method of the Normal Boundary Intersection

For Oree et al. [16], energy planning optimization models in
which the sole objective is to minimize costs are little robust, and
that other variables should be considered in the analysis. On the
other side, multi-objective optimization problems are complex,
since different objective functions depend upon the same set of
decision variables and are often conflicting [17]. Trade-offs are al-
ways present in multi-objective problems, requiring relaxation of
one objective in order to improve another [18].

According to Aghaei et al. [19], the most common objectives in
energy planning issues involve cost minimization, environmental
impacts and the search for appropriate levels for the use of the
system.

Luz et al. [20] present solutions from different multiobjective
linear programming techniques for scenarios of expansion of the
Brazilian electric system. The models are based on the new gov-
ernment targets for renewable energy sources, considering three
objective functions: total cost minimization, peak load generation
maximization and non-hydro RES contribution maximization.

Aghaei et al. [21] propose a multiobjective model with the
purpose of minimizing costs, environmental impact, energy con-
sumption from fossil fuels, exposure to fossil fuel import price
volatility and increasing system reliability. The problem is formu-
lated throughmixed integer linear programming, and solved by the
ε-method.

Vahidinasab [22] used the augmented ε -constraint method to
optimize the resources of a distributed energy project, including
wind turbine, photovoltaic, fuel cell, micro turbine, gas turbine and
diesel engine. The optimization seeks to minimize the monetary
cost and minimize GHG in the presence of electrical load, as well as
uncertainties in electricity market prices. To find the best Pareto
optimal solution a fuzzified decision making approach was used.

Among methods used for the solution of multi-objective prob-
lems, the Normal Boundary Intersection (NBI) method has been
standing out from others [23]. A standard method for generating
the Pareto frontier in multi-objective optimization problems is the
weighted summethod. However, according to Das and Dennis [24],
this method can only obtain points from all parts of the Pareto
frontier when it is convex. Furthermore, an evenly distributed set of
weights fails to produce an even distribution of points from all parts
of the Pareto frontier, even for convex ones. In order to overcome
these drawbacks, the NBI method was proposed showing that the
Pareto surface is evenly distributed independent of the relative
scales and convexity of the objective functions. It is based in the
concept of coalescence of different objective functions and allows a
full construction of a Pareto frontier with the resulting set of
optimal decisions, in order to help the final decision-making pro-
cess [24].

NBI is a geometric parameterization method capable of pro-
ducing the entire set of solutions on a Pareto frontier evenly
distributed, even when it comes to nonconvex problems. This en-
ables to the decision maker easily identify the best Pareto-optimal
solution to the economic planning problem of wind farms.

According to Das and Dennis [24], the first step for the appli-
cation of NBI method is to build the payoff matrix. For each
objective function fi, the individual optimal solutions are employed
in building the payoff matrix [21,25]. The payoff matrix, fi*(xi*),
described in Eq. (1), represents the optimal value resulting from fi,
with x representing the vector of decision variables that optimize
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the objective functions.
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In accordance with Ahmadi et al. [26], in order to understand
the NBI mechanism it is necessary to understand the meaning of
the utopia and nadir points. While the best possible values for all
objective functions in a problem is represented by the utopia point,
the nadir point represents the worst possible values that the same
objective functions can attain simultaneously. The objective func-
tions are then normalized based on the values of the utopia and
nadir points, as shown below:

f iðxÞ¼
fiðxÞ � f Ui
f Ni � f Ui

i ¼ 1;…;p (2)

where: f iðxÞ ¼ normalized objective function; f Ui ¼ utopia function;
f Ni ¼ nadir function.

The normalization of the objective functions also implies the
normalization of the payoff matrix Ф, according to Ahmadi et al.
[26], with a set of points RP characterizing the so-called utopia line,
which is formed by the convex combination of each line of the
payoff matrixФ. This utopia line is also referred to as Convex Hull of
Individual Minima (CHIM), and is illustrated in Fig. 1.

If w is a convex weighting, then Фw represents a point in the
utopia lines. If a unit normal to the CHIM in respect to the origin is
indicated by n, onemay represent the set of points assembled at the
Pareto frontier by: Фw þ Dbn, where bn is a vector of unitary values.

Thus, as explained by Das and Dennis [24], the intersection point
of the normal and the frontier of the viable region closer to the
origin corresponds to the maximization of the distance between
the CHIM and the Pareto frontier, and may be expressed in the
following manner:
Fig. 1. Normal Boundary Intersection (NBI) graphical representation.
Source: Brito et al. [27].
Max
ðx; DÞ

D

Subjectto : Fwþ Dbn ¼ FðxÞ
x2U

(3)

where: FðxÞ ¼ vector containing the objectives normalized values;
U ¼ viability region, generally including equality and inequality-
type restrictions of the problem.

Vahidinasab e Jadid [28] formulated a NBImodel to be applied in
the strategic analysis of contracting electricity-generation projects
for one electricity system, based on (i) combined power flow
minimization and (ii) a set of coefficients representing the emission
of polluting substances. Also, (iii) the individual project income is
optimized while keeping the final energy price as low as possible
for the final consumer, with all the physical restraints of the gen-
eration duly considered.

Another case of the NBI-method deployment in order to support
problem solving in the field of energy-planning is described by
Aghaei et al. [21]. In that research, a multi-objective programming
based on the NBImethod is developed to help plan the expansion of
energy conversion activity with the objectives of (i) minimizing
costs and (ii) maximizing reliability.

Aghaei et al. [19] developed a multiobjective programming from
NBI for generation expansion planning that prioritizes the
following objectives: minimizing costs and environmental impacts,
and maximizing reliability.

Ahmadi et al. [26] deployed NBI-based multi-objective pro-
gramming in order to integrate thermal conversion plants to high-
voltage power grids. The objective functions are related to (i) cost
minimization and (ii) GHG emission minimization. In order to help
select the Pareto-optimal solution, a technique known as Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS), was
employed.

Izadbakhsh et al. [29] developed an optimization model set to
determine the best mix of equipment among micro wind turbines,
PV panels, battery banks, diesel generators and large-size wind
turbines, in order to assemble a small, isolated, generation system.
The NBI method is programmed with two objective functions: (i)
overall system cost minimization and (ii) minimization of the
emission of pollutants. In order to sort out the Pareto-optimal so-
lution, the TOPSIS fuzzy-logic tool was also employed.

Fonseca et al. [30] also proposed an optimization model to
determine the best mix for a hybrid, isolated system, which entails
solely solar PV energy, at the Amazon region. The results were
compared with output from the Homer® software. The authors
employed mixture design of experiments and Monte Carlo simu-
lation in the experiments in order to formulate the objective
functions and the NBI method to perform the multi-objective
optimization based on the following objectives considered: (i)
GHG emission minimization and; (ii) a Levelized Cost of Electricity
(LCOE), based on the local level of energy demand.

Aquila et al. [23] developed a method to guide regulatory-
authorities of the electricity sector in bidding processes for hiring
hybrid, on-grid, wind-solar (PV) energy plants. The method is
assembled from a mixture design of experiments in order to
formulate the objective function; NBI is deployed for the optimi-
zation process while a metric based on the ratio of the entropy to
the global percent error is deployed to identify the single best
optimal solution. The model is validated considering the scenarios
of assembling the hybrid plants in twelve different Brazilian cities
and the objectives considered are: (i) the maximization of reduced
emission density and, (ii) the minimization of the classical LCOE
function, leveled by the energy production.

The literature has emphasized the generation expansion
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planning with integration of renewable sources and the configu-
ration of energy matrices and hybrid systems. In this respect, the
present study fills some gaps in the literature, since besides refer-
ring to the planning of a generation unit using a multi-objective
optimization method, it considers both quantitative (energy den-
sity and NPV) and qualitative (wind turbine brand) variables. The
study also seeks to investigatewhether the turbine brands analysed
are more efficient when installed in a particular region. Moreover,
another novelty is the association of NBI, RSM and DEA techniques
to solve a multi-objective problem in energy planning.
Fig. 2. Constant scaling return for a single input and output.
Source: Pedroso et al. [37].
2.2. Data Envelopment Analysis

Among various tools for measuring efficiency, such as statistical
conventional methods, non-parametric methods and artificial in-
telligence methods, the Data Envelopment Analysis (DEA) can
effectively measure the relative efficiency of Decision-Making Units
(DMUs), which demand multiple inputs to generate multiple out-
puts [31]. The DEA is a non-parametric method which has been
broadly employed for problem-solving at many types of business
and organizations, such as banks, schools, hospitals, the agricul-
tural sector and the energy sector [31,32].

The advantage of the DEA method lies in its ability to evaluate
the individual relative efficiency, or performance, of an individual
DMU inside an interest group, operating inside a certain application
domain [33]. The individual DMUs are compared among them-
selves and differentiate from one another by the quantity of
consumed resources (inputs) and also by the quantity of outputs
they produce [34]. Kao [32] states that the DEA method allows,
among other things, to identify the benchmark DMUs against
which the other DMU should be compared to.

The weighting for the input and output variables of the general
DEA model may be obtained from the model proposed by Charnes
et al. [35], given by (4):

maxwo ¼

Pb
q¼1

uqyqo

Pa
p¼1

vpxpo

Subjectto :

Pb
q¼1

uqyqi

Pa
p¼1

vpxpi

� 1; i ¼ 1;2; :::; n

uq � 0; q ¼ 1;2; :::; b

vp � 0; p ¼ 1;2; :::; a

(4)

where i is the DMU index, with values in the interval i¼ 1,…, n; q is
the output index, q¼ 1,…, b; b is equal the number of outputs in the
problem; p is the input index, p ¼ 1, …, a; a is equal the number of
inputs in the problem; yqi is the value of the qth output for the ith
DMU; xpi is the value of the pth input for the ith DMU; uq is the
weight associated with the qth output; vp is the weight associated
with the pth input;wo is DMUo relative efficiency, which is the DMU
undergoing evaluation; and yqo and xpo are output and input data
from DMUo, respectively.

The model introduced in (4) is non-linear and represents a case
of fractional programming, however, it lends itself to linearization.
This exercise was performed by Charnes et al. [35], who proposed a
linearized form known as Constant Returns to Scale (CRS), shown in
(5), also known as the multipliers model.
maxwo ¼
Xb
q¼1

uqyqo

Subjectto :
Xa
p¼1

vpxpo ¼ 1

Xb
q¼1

uqyqi �
Xa
p¼1

vpxpi � 0 i ¼ 1;2; ::::;n

uq � 0; q ¼ 1;2; :::; b
vp � 0; p ¼ 1;2; :::; a

(5)

For wo ¼ 1, DMUo, the DMU undergoing analysis should be
considered efficient in relation to the other DMUs. For wo < 1, this
DMU should be regarded as inefficient [36].

For a geometrical interpretation of the CRS model, a Constant
Returns to Scale problem may be represented as seen in Fig. 2. This
figure illustrates a case with a single input and output, where the
slope of the line represents a linear production function with
constant scale yields, i.e., the increase of production (ordinate axis)
and input consumption (abscissa axis) are proportional.
2.3. RSM experiment planning

In order to set the objective functions of an optimization prob-
lem, the Design of Experiments (DOE) may be employed for model
estimation. According to Montgomery [38], one experiment may be
defined as a test or a series of tests where changes are imposed to
the input variables of a process in order to observe the way the
outputs respond to those changes in input.

If the process depends on more than one factor, then the rec-
ommended approach is to conduct a factorial experiment. How-
ever, if the aim is to determine the region where the factors induce
the best possible outcome, that is, if the objective is to maximize
the results, another experimental arrangement should be done
whose objective is to develop an empirical model of the process in
order to result in more accurate estimates of the optimal operating
conditions. This approach for optimizing the process is a key
feature of the RSM methodology [38].

Considering that for the majority of the industrial processes the
relations among the results and the independent variables are not
known ex ante, a suitable approximation is sought to represent the
answers of interest as functions of those variables. In general,
polynomial functions are employed to describe the relations. When
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the answers are well modelled by a linear function, the approxi-
mate relation may be represented by the following first-order
model [38].

yðxÞ¼b0 þ b1x1 þ b2x2 þ…þ bkxk þ εi ¼ b0 þ
Xk
i¼1

bixiþεi (6)

where: yðxÞ is the answer of interest; xi are the independent vari-
ables; bi are the coefficients to be estimated; k is the number of
independent variables; εi is the experimental error.

If the answer locus has curvature, then a higher-order poly-
nomial shall be adopted:

yðxÞ¼b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

X
i< j

X
bijxixj þ εi (7)

Most problems with answer-surfaces employ one or both
models shown and, even though it is not likely the polynomial
model will perform as a suitable approximation for all experi-
mental space covered by the independent variables, those models
have been proven efficient for at least a specific part of the region
[38].

Since one of the objectives of RSM entails optimizing the an-
swers, it is recommended, whenever possible; to represent them by
means of second-order models, since the curvature of those models
define the location of a stationery point. In order to adjust a second-
order model, the design of experiment design shall have some
properties. Since Eq. (5) model has 1þ 2kþ kðk�1Þ= 2 parameters,
the design of experiment shall have at least this same number of
different points and at least three levels for each variable or factor.

It is often convenient, while applying the RSM method, to
transform the problem variables into encoded variables. Encoded
variables are defined as dimensionless variables with zero average
and the same standard deviation. The following coding scheme
may be used, in accordance with Myers et al. [39]:

Xcoded ¼
Xuncoded � ðHiþ LoÞ=2

ðHi� LoÞ=2 (8)

where: Hi is the value for the decision variable equivalent to
levelþ1; and Lo, for the level�1; Xcoded is a standardized valuewith
reference to the maximum and minimum values of the DOE; Xun-

coded is the real value of response variables.
Similarly, if the conversion back to uncoded values is planned, it

suffices to rewrite (8) in the following manner [40,41]:

Xundecoded ¼
Hiþ Lo

2
þ Xcoded

Hi� Lo
2

(9)

where: Hi is the value for the decision variable equivalent to
levelþ1; and Lo, for the level�1; Xcoded is a standardized valuewith
reference to the maximum and minimum values of the DOE; Xun-

coded is the real value of response variables.
Typically, the estimation of the coefficients defined in Equations

(6) and (7) models is done by applying the method of the Ordinary
Least Squares (OLS). The method is based on choosing values for bi,
so that the sum of the squared errors is minimized [39]:

L¼
Xk
i¼1

ε
2
i ¼

Xk
i¼1

 
yi � b0 �

Xk
i¼1

bixi

!2

(10)

where: yi is the response of interest; xi are independent variables;
bi are the coefficients to be estimated; k is the number of inde-
pendent variable; εi is the experimental error.
In matrix notation, Eq. (7) may be rewriten as:

y¼Xbþ ε (11)

where:

y¼

2664
y1
y2
«
yn

3775; X ¼

2664
1 x11 x12 / x1k
1 x21 x22 / x2k
« « « 1 «
1 xn1 xn2 / xnk

3775; b ¼

2664
b0
b1
«
bk

3775; ε ¼
2664
ε1
ε2
«
εn

3775
(12)

and solving for L:

L ¼ ðy � XbÞT
�
y � Xb

�
¼ yTy � bTXTy � yTXbþ bTXTXb

¼ yTy � 2bTXTy þ bTXTXb
(13)

provided bTXTy is a 1x1 matrix, i.e a scalar, and the transposed
matrix ðbTXTyÞT ¼ yTXb is the same scalar. The least-square esti-
mation should satisfy:

vL
vb

¼ � 2XTy þ 2XTXbb ¼ 0 (14)

which may in turn be simplified into:

XTXbb¼XTy (15)

Eq. (15) represents the set of least squares normal equations in
matrix notation. By multiplying both sides of Eq. (15) by the inverse
of XTX, results:

bb¼
�
XTX

��1
XTy (16)

Eq. (16) is the approximate functionwhich relates the answer of
interest with the process variables, that is, since the real functional
relation among x and y is unknown, it is estimated by means of a
regression model, which is suitable within a certain range of vari-
ation of the independent variables [38].

3. Problem and data presentation

3.1. Input variables of the problem

Concerning wind farm investments, it is noticeable that the
most sensitive variables for the NPV result are the (i) energy selling
price, (ii) the level of electricity production, and (iii) the initial in-
vestment for the enterprise, especially on wind turbines [42].
Variables (ii) and (iii) grow with the wind farm installed power.
Also, the social and environmental issues grow with the installed
power, since larger projects demandmore land and usually result in
more negative impact, especially during site construction.
Accordingly, the installed power was selected as one of the input
variables of the problem.

Another variable selected is the specific type wind turbine
considered. Two sets of 5 equipment each with different diameters,
from two distinct manufacturers (A and B), where selected with
large diameters characteristic of current utility-size wind turbines,
in the range of 2e3.5 MW of nominal power output. Each physical
equipment was represented in the calculations by its characteristic
power production curve as a function of the wind speed, as pro-
vided by the manufactures. It is noticed that the choice of the wind
turbine regarding its fabrication, impacts not only the produced
energy as also the area occupied by the wind farm. That said, the
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company that produces the wind turbine is a categoric variable
which is included in the analysis.

The energy selling price is both a key variable for the level of
return on awind farm investment, also is the main impact factor on
the final consumer [23]. This imposes an important tradeoff to the
problem and confirms the relevance of this input variable
considered.

After determination of the input variables, i.e., (i) installed po-
wer and (ii) energy selling price as the continuous variables and the
type of equipment, and the type of equipment as the category
variable, it is possible to devise the experiment arrangement from
the RSM.

In the current problem, four experiment arrangements were
generated, two for the calculation of the output variables to be
considered in the context of each of the two manufactures of tur-
bines at for the city of Macau, at Rio Grande do Norte (RN) state, and
two others at the city of Santa Vit�oria do Palmar, at Rio Grande do
Sul (RS) state.

3.2. Response variables to be optimized

3.2.1. Energy density
The energy density produced by a wind farm corresponds to the

amount of energy produced in a unity of area over a given period
and can be considered as a variable that contributes to the electric
sector well-being when optimized. The energy density calculation
can be mathematically described as in Eq. (17):

re ¼
AEP
A

(17)

with: re ¼ energy density (MWh/m2); AEP ¼ annual energy pro-
duction (MWh); A ¼ used area (m2).

For the AEP estimate for the four power levels and five central
points, equations for the wind turbines power curves were used
together with a Monte Carlo Simulation (MCS). For estimating the
energy production of each turbine a regression model was esti-
mated, using the wind speed as the independent term. Thus, a
polynomial interpolation of fifth degree was chosen for the tur-
bines power curves, as pictured in Figs. 3 and 4, because this model
presented the best fit (R2 above 98%). Then the result for the power
is multiplied by 8.76 (8,760 h/1000) to obtain the annual energy
production of each turbine, as in Eq. (18):

AEP¼8;76
�
b0 þ b1vþ b2v

2 þ b3v
3 þ b4v

4 þ b5v
5
�

(18)

with: AEP ¼ annual energy production (MWh); v ¼wind speed (m/
s); bi ¼ regression coefficients.

As there are five central points in the experimental setting, it
was opted to estimate the AEP through a MCS. According to Jiang
et al. [43], a MCS is characterized by numerous executions with
different values for the uncertain inputs which are randomly
determined by predefined probability distributions in each simu-
lation round. With the input samples, many simulation rounds are
carried for an output.

The AEP’s uncertainty resides on the annual averagewind speed
and its stochastic calculation can be mathematically described by
Eq. (19):

AEP¼8:76
ðvm�ax

vm�ın

PðvÞf ðvÞdv (19)

with: vmax ¼ maximumwind speed; vmin ¼ minimumwind speed;
P(v) ¼ average wind speed probability; f (v) ¼ wind probability
distribution function.
For the purpose of modeling uncertainties of the annual average

wind speed behavior, a Weibull distribution is considered, usually
used in studies about wind energy production [44e46]. In Eq. (20)
it is depicted the Weibull distribution probability density function:

f ðvÞ¼ k
C

�v
C

�k�1
e
�
�

v
C

�k

(20)

with: v ¼ wind speed; C ¼ scale parameter (m/s); k ¼ shape
parameter (dimensionless).

Given that wind speed behavior is different in each place, the
appropriate parameters for the Weibull distributions were used for
the cities of Santa Vit�oria do Palmar-RS (C ¼ 7.7; k ¼ 2.32) and
Macau-RN (C ¼ 8.26; k ¼ 2.66), based on Brazilian Wind Atlas [47].

In the calculation of the territorial area, the sum of the area used
by the total amount of turbines of each kind needed to meet each
considered power level was evaluated. Eq. (21) contains the
mathematical formula for the estimate of the territorial area, ac-
cording to Custodio [48]:

A¼45
2
D2ðnþ2Þ (21)

with: D ¼ turbine diameter (m); n ¼ amount of the analysed
turbine.

In Table 1 there is the diameter and used area for one unity of
turbine of each kind for the two considered brands:
3.2.2. Net Present Value
The reason for doing a financial viability analysis is to help the

decision making of whether to consider an opportunity for in-
vestment. For that, one of the most used criteria for supporting this
decision is the Net Present Value (NPV) [45,49]. The NPV basically
corresponds to the cash flow due to the difference between the
income and outcome in each period, which are discounted with a
rate, representing by the capital cost [50,51]. Eq. (22) describes the
formula for calculating the NPV.

NPV ¼
Xn
t¼0

CFt
ð1þ iÞt (22)

with: i¼ discount rate; t¼ considered period; CFt¼ net cash flow in
period t.

Literature on financial administration says that an investment
must be considered when the NPV is greater or equal to zero. This
also means that the Internal Rate of Return (IRR) is superior to the
minimum capital cost considered, as a function of the investment
risk [52]. Therefore, estimating an investment’s capital cost is a
fundamental step for performing a financial viability analysis.

Regarding the capital cost estimate, a tax of 6,19% was used as
benchmarking, as it was calculated in Aquila et al. [23] by the
Weighted Average Cost of Capital (WACC) method, which is
considered in many studies about analysis of investments in
renewable energy generation projects, as in Ondracek et al. [53] e
Ertürk [49], and is also recommended by the Clean Mechanism’s
Executive Board, in annex to Guidelines on the Assessment of In-
vestment Analysis [54].

About NPV optimization, it is known higher prices contribute to
higher NPV values but also make the energy cost less affordable for
the final consumer. This way, it follows that the idea is to meet the
lowest energy selling price which still makes the project viable
(NPV � 0). So, in this study the NPV will be an output variable to be
minimized with the intention of getting a positive NPV with the



Fig. 3. Curve power for Brand A turbines.

Fig. 4. Curve power for Brand B turbines.

G. Aquila et al. / Renewable Energy 158 (2020) 628e641634



Table 1
Data on wind turbines.

Turbine type D (m) A (m2)

A (2 MW) 82.0 302,580.0
A (2.3 MW) 82.0 302,580.0
A (2.4 MW) 82.0 302,580.0
A (3 MW) 115.7 602,392.5
A (3.5 MW) 101.0 459,045.0
B (2 MW) 80.0 288,000.0
B (2.6 MW) 100.0 450,000.0
B (3 MW) 112.0 564,580.0
B (3.1 MW) 112.0 564,580.0
B (3.3 MW) 126.0 714,420.0

Fig. 5. Step by step methodology for wind farm configuration.

Table 3
Factors and their levels.

Factors Symbol Levels

�1.414 �1 0 1 1.414

Power (MW) Pw 5.0 8.7 17.5 26.3 30.0
Price (R$) Pr 100.0 114.6 150.0 185.4 200.0
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lowest possible energy selling price. Table 2 shows the cash flow
structure for calculating the NPV and Annex 1 contains the hy-
pothesis assumed for calculating each parameter in the cash flow.

4. Results and discussion

The economic planning of wind farms using the NBI-RSM-DEA
method consists of the following steps: 1. RSM is used to produce
experimental scenarios; 2. Energy density and NPV are estimated
for each RSM experimental scenario; 3. Estimation of objective
functions by quadratic regressions; 4. The objective functions ob-
tained are used to construct the problem solution frontier from the
NBI method; 5. The best Pareto-optimal solution of the problem is
identified from the DEA. Fig. 5 illustrates the step-by-step of the
proposed planning for setting up a wind farm.

The experimental setting produced thirteen scenarios, five
corresponding to central points of the setting and two to axial
points. In this problem, the axial points correspond to 5 MW and
30 MW, which are actually the minimum power (x1) that charac-
terizes a large scale wind farm and the maximum power for which
a wind farm can get tax discount on the use of the distribution
system in Brazil, respectively.

Regarding the price (x2), to the axial points are given the values
R$/MWh 100.00 to the lower and R$/MWh 200.00 to the higher.
These have been the values between which wind energy varied
between 2016 and 2017, the period inwhich data for the wind farm
financial analysis was collected. It is valid to point that the possible
values for the categorical variable which refers to the turbines
brands are addressed as “Brand A00 and “Brand B”. In Table 3 the
uncoded values for the power levels and adopted prices in the
experimental setting are described.

In the second step the output of the variables to be optimized
are evaluated for the four analysed cases. The cases outlined in
Fig. 6 correspond to the possible wind farm configuration in the
cities of Vit�oria do Palmar-RS and Macau-RN, with wind turbines of
brand A or B.

For each of the four cases the outputs for energy density (y1) and
NPV (y2) were calculated. It is important to note that estimating
Table 2
Wind farm Project cash flow.

Gross revenue

(�) Tax collected on gross revenue
(�) Sector charges
(�) O&M costs
(�) Administrative and insurance expenses
(�) Financial expenses and debt amortization
(�) Income tax and social contribution
(�) Investments
(þ) Funding release
(¼) Cash flow
AEP is fundamental for both y1 and y2 calculations. For this esti-
mate, the average over the 5,000 values provided by SMC in each
scenario was considered. Because of it, the central points of the
setting show different values for each output.

In this step it is possible to note the difference in output over the
scenarios due to different input levels, different generation curves
profiles for each kind of turbine and distinct wind potential in each
city considered for the wind farm. Table 4 contains the calculated
results for each scenario in each analysed case (see Table 5).

Afterwards, in the third step all objective functions were taken
to have a good determination coefficient (R2 > 70%) [55]. In Figs. 7
and 8 the output surfaces for y1 and y2 for each turbine brand in the
cities of Santa Vit�oria do Palmar-RS and Macau-RN are shown
graphically, respectively.

With the objective functions modelled, the next step is to solve
the multiobjective problem by formulating the NBI described in Eq.
(3), with the additional constraint referent to a RSM for a problem
with two inputs (x12þx2

2 �
ffiffiffi
2

p
). For that, 21 optimization rounds

were carried varying wi by 0.05 in each round. As noted in section
3.2, in constructing the payoff matrices, the individual optimization
of the objective referent to energy density was done in the sense of
maximizing energy density and minimizing NPV.

However, the criteria used for determining the best Pareto-
optimal solution was to identify the solution with a positive NPV



Fig. 6. Diagram with the four possibilities analysed.
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(safeguarding the project’s viability to the investor) which has the
lowest energy selling price. This way, the best Pareto-optimal so-
lution would be the one that guarantees a financial return to the
investment and carries the lowest possible energy cost to the
electricity customer.

In Table 6 there are the x1 and x2 values for each Pareto-optimal
solution of the analysed cases, with the values for the best solution
highlighted and in Table 7 the same for y1 and y2. In Fig. 9 the Pareto
boundaries are illustrated with the best solutions for each analysed
case, also with the best Pareto-optimal solution in highlight.

With the purpose of identifying which Pareto-optimal solution
is the best among the analysed cases, DEA was applied to verify in
which context the wind farm can be the most efficient when pro-
ducing the results y1 and y2 while using the inputs x1 and x2. DEA
was applied in its classic formulation as described in Eq. (4), with
the obtained results described in Table 8 and the efficiency
boundaries illustrated in Fig. 9. It is noted that the DMU in which
thewind farm can be themost efficient is with it being in the city of
Table 4
Design of experiments for Density and NPV.

N Pw (MW) Pr (R$) Santa Vit�oria do Palmar-RS

Brand A Brand B

Density NPV Density

1 �1 �1 23.727 2.02 22.482
2 þ1 �1 61.534 22.03 66.657
3 �1 þ1 23.757 28.19 22.625
4 þ1 þ1 61.229 108.83 66.561
5 �1.414 �1 28.431 9.99 26.499
6 þ1.414 �1 47.573 51.06 61.231
7 0 �1.414 52.208 �7.08 62.607
8 0 þ1.414 51.879 65.05 62.935
9 0 0 52.559 30.18 62.398
10 0 0 51.371 27.69 63.417
11 0 0 52.352 29.75 63.124
12 0 0 52.166 29.36 61.932
13 0 0 52.292 29.62 63.425

Table 5
Coefficients for the estimated objective functions.

Terms Santa Vit�oria do Palmar-RS

Brand A Brand B

Density NPV Density NPV

Constant 52.1482 29.3213 62.8592 51.792
Pw 12.7936 19.8418 17.1536 34.472
Pr �0.0925 26.8738 0.0637 30.653
Pw2 ¡7.6885 3.2293 ¡11.6815 0.5247
Pr2 �0.6677 2.4600 �2.2282 �1.844
Pw x Pr �0.0839 15.1574 �0.0599 17.444
R2 (%) 85.01% 95.52% 90.56% 99.37%
R2adj. (%) 74.31% 92.33% 83.82% 98.92%

Bold values represent significant terms in the models (p-value< 5%).
Macau-RN and using the turbine of brand A.
The second best context is in the city of Santa Vit�oria do Palmar-

RS with turbines of brand B, the third in the city of Santa Vit�oria do
Palmar-RS with turbines of brand A and the worst one in the city of
Macau-RN with turbines of brand B. It is possible to note that the
best case scenarios for each of the cities were with different brands
of turbines, what asserts for the relevance of identifying the loca-
tion as well as the wind turbine model for the planning of a wind
farm.

Considering the proposed methodology, it was capable of
achieving the objective of helping with the planning of a wind farm
in a way compatible with the maximization of the electric sector
well-being. It can also be said the methodology meet the interests
of regulators, investors and consumers of electric energy.

For the regulators the methodology could be implemented as a
standard requirement for projects taking part in bids. As for the
investors, by exploring the landscape in the most productive way
and assuring rentability, an option for future expansion of the
project is preserved. Moreover, by meeting the important
requirement of mitigating the socio-environmental impact, the
project becomes more attractive for certificate programs that
authorize the commercialization of Renewable Energy Certificates
(REC), what would make possible for the investor to obtain new
increments in the NPV in the future.

Nonetheless, on considering that the best optimal solution is the
one which makes the project rentable with the lowest energy
selling price, the final customer is also being benefited. A lower
energy selling price favors a cheaper energy cost for the final
customer. Moreover, a socio-environmental benefit in the project
setting favors society as awhole. That is, the customers pays a lower
price for the energy they consume and the project which produces
Macau-RN

Brand A Brand B

NPV Density NPV Density NPV

�0.20 28.094 9.80 23.425 1.48
33.89 61.696 22.40 60.182 22.40
24.93 28.094 40.68 23.694 28.01
128.80 62.583 113.90 60.998 107.96
7.74 33.507 15.90 27.468 8.87
105.19 66.456 125.89 53.478 74.46
7.46 68.612 15.86 58.658 1.94
95.98 68.652 111.98 59.918 87.55
50.82 68.236 63.07 59.084 43.87
52.96 67.778 62.11 59.691 43.87
52.35 68.862 64.39 59.410 44.56
49.85 67.821 62.20 59.481 44.70
52.98 69.156 65.00 59.771 45.31

Macau-RN

Brand A Brand B

Density NPV Density NPV

5 68.3705 63.3551 59.4873 44.4634
0 14.3359 30.1712 13.8556 24.2061
5 0.1180 32.2907 0.3584 29.1449

¡12.7419 �1.4063 ¡11.4585 ¡2.2090
3 �3.4167 �4.8964 �2.0510 �0.6708
5 0.2219 15.1535 0.1364 14.7581

85.82% 91.79% 89.23% 99.67%
75.68% 85.92% 81.54% 99.44%



Fig. 7. Response surfaces for Density and NPV - Santa Vit�oria do Palmar-RS.

Fig. 8. Response surfaces for Density and NPV - Macau-RN.
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Table 6
x1 and x2 results for multiobjective optimization.

Weights Santa Vit�oria do Palmar-RS Macau-RN

w1 w2 Brand A Brand B Brand A Brand B

Power (x1) Price (x2) Power (x1) Price (x2) Power (x1) Price (x2) Power (x1) Price (x2)

1.00 0.00 24.860 145.701 23.990 150.157 22.475 151.257 22.850 153.801
0.95 0.05 24.814 141.553 23.801 144.787 22.229 145.813 22.714 148.649
0.90 0.10 24.776 137.434 23.650 139.556 22.048 140.826 22.610 143.767
0.85 0.15 24.746 133.346 23.533 134.464 21.917 136.200 22.532 139.120
0.80 0.20 24.723 129.289 23.448 129.510 21.825 131.870 22.477 134.681
0.75 0.25 24.708 125.266 23.392 124.693 21.763 127.794 22.444 130.429
0.70 0.30 24.700 121.278 23.363 120.015 21.726 123.937 22.429 126.348
0.65 0.35 24.701 117.327 23.357 115.474 21.710 120.272 22.430 122.424
0.60 0.40 24.710 113.415 23.372 111.070 21.710 116.778 22.445 118.646
0.55 0.45 24.727 109.546 23.405 106.799 21.723 113.438 22.474 115.003
0.50 0.50 23.835 106.897 22.410 104.019 21.747 110.237 22.514 111.487
0.45 0.55 22.944 104.990 21.162 102.194 21.780 107.161 22.564 108.089
0.40 0.60 22.137 103.568 19.955 100.974 21.822 104.199 22.622 104.804
0.35 0.65 21.402 102.499 18.805 100.273 21.035 102.042 21.388 102.481
0.30 0.70 20.727 101.695 17.718 100.008 19.835 100.880 20.199 101.179
0.25 0.75 20.102 101.095 16.695 100.104 18.740 100.246 19.179 100.453
0.20 0.80 19.519 100.657 15.731 100.503 17.735 100.009 18.279 100.097
0.15 0.85 18.972 100.348 14.822 101.161 16.807 100.077 17.470 100.000
0.10 0.90 18.455 100.146 13.964 102.043 15.945 100.388 16.732 100.095
0.05 0.95 17.966 100.035 13.150 103.125 15.139 100.900 16.050 100.338
0.00 1.00 17.500 100.000 12.377 104.392 14.382 101.580 15.414 100.701

Table 7
y1 and y2 results for multiobjective optimization.

Weights Santa Vit�oria do Palmar-RS Macau-RN

w1 w2 Brand A Brand B Brand A Brand B

Density (y1) NPV (y2) Density (y1) NPV (y2) Density (y1) NPV (y2) Density (y1) NPV (y2)

1.00 0.00 57.480 43.32 69.157 77.58 72.407 81.34 63.699 62.39
0.95 0.05 57.471 38.68 69.100 70.24 72.317 74.24 63.654 56.53
0.90 0.10 57.443 34.17 68.938 63.23 72.083 67.77 63.527 51.06
0.85 0.15 57.397 29.79 68.685 56.51 71.743 61.77 63.333 45.91
0.80 0.20 57.334 25.54 68.351 50.04 71.320 56.13 63.082 41.04
0.75 0.25 57.254 21.40 67.944 43.80 70.832 50.78 62.783 36.40
0.70 0.30 57.158 17.39 67.475 37.75 70.290 45.65 62.442 31.97
0.65 0.35 57.046 13.48 66.948 31.88 69.704 40.72 62.064 27.72
0.60 0.40 56.920 9.69 66.371 26.17 69.081 35.96 61.654 23.62
0.55 0.45 56.779 5.99 65.750 20.61 68.426 31.33 61.215 19.66
0.50 0.50 56.562 2.85 64.975 15.52 67.743 26.83 60.751 15.82
0.45 0.55 56.213 0.66 63.835 11.57 67.035 22.43 60.265 12.09
0.40 0.60 55.772 �0.87 62.372 8.64 66.307 18.12 59.758 8.46
0.35 0.65 55.267 �1.95 60.652 6.51 65.499 14.17 59.098 5.57
0.30 0.70 54.716 �2.69 58.732 5.00 64.428 11.35 58.187 3.90
0.25 0.75 54.133 �3.20 56.664 3.97 63.154 9.43 57.139 2.89
0.20 0.80 53.525 �3.52 54.485 3.27 61.736 8.14 56.011 2.27
0.15 0.85 52.898 �3.72 52.226 2.83 60.214 7.30 54.832 1.89
0.10 0.90 52.257 �3.81 49.907 2.58 58.616 6.79 53.620 1.68
0.05 0.95 51.604 �3.82 47.547 2.45 56.962 6.53 52.386 1.57
0.00 1.00 50.943 �3.76 45.158 2.42 55.265 6.45 51.136 1.54
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that energy is causing a lesser socio-environmental impact. This
way, a greater usefulness level is achieved for the whole society.

5. Conclusions

The present study showed that the multiobjective optimization
aided by DOE and DEA is a powerful tool for establishing the ideal
configuration of a wind farm taking into consideration interests
objectives for all stakeholders. For that, in the proposed method-
ology, the wind farm planning considers objectives which converge
to the maximization of the electric sector well-being.

It is noted that the optimization of the model NBI-RSM-DEA
offers different levels for the optimal solution, according to the
specific wind potential of each place and technology referent to the
brand of thewind turbines. In the analysed case, it was also possible
to note that a wind turbine brand can have a better performance in
a particular place.

It is possible to say that the proposed methodology’s objective
wasmet, noting that it was possible to identify the best power level,
selling price, hosting place and turbine brand to be used in the
planning of a wind farm. Also valid to note is that the methodology
shows a great opportunity to support bidding processes and
renewable energy certification programs, given that the socio-
environmental potential is enhanced and economic viability is
assured.

The main advantage of the proposed method was the possibility



Fig. 9. Pareto frontiers for Density and NPV.

Table 8
DEA results.

DMU x1 x2 y1 y2 Efficiency

Santa Vit�oria do Palmar e RS (Brand A) 22.9 104.99 56.21 0.66 0.91
Santa Vit�oria do Palmar e RS (Brand B) 17.7 100.01 58.73 5.00 0.95
Macau e RN (Brand A) 17.7 100.01 61.74 8.14 1.00
Macau e RN (Brand B) 17.5 100.00 54.83 5.00 0.88
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of obtaining the optimal solution to a wind farm planning problem
in the face of a trade-off with conflicting objectives. It is worth
mentioning that each technique used in the method is extremely
important to achieve this result. RSM allowed to build the objective
functions for the problem. NBI routine provided a set of optimal
solutions in each scenario. And DEA proved to be a subjectivity-free
technique to indicate the best optimal solution. In turn, the set of
these mathematical techniques involves complex concepts, which
can limit the popularization of the approach for practical
applications.

As for future works, it is recommended the development of new
methodologies similar to the present study’s, with the analysis of
different input and output variables. Also as an opportunity for
further research is the making of other methodologies focused in
the planning of generation systems for other energy sources, aim-
ing at maximizing the electric sector well-being.
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Parameters Values Sources

Investment R$/MW 3,918,623.32 CCEE [56]
Project life 20 years COPEL [57]
Energy selling price R$/MWh 164.82 CCEE [56]
Energy produced Calculated by SMC Calculated by Equation 19
Leasing R$ 68.73 per km2 Aquila et al. [42]
O&M Cost 2% of investment Based on Aquila et al. [42]
Distribution system fee R$ 4,580.00 by installed MW COPEL [57]
Marketing fee R$ 0.07 by MWh Aquila et al. [42]
Operator fee R$ 470.00 by MW installed Aquila et al. [42]
ANEEL fee R$ 2,556.24 by MW installed ANEEL [58]
Administrative and insurance expenses 0.3% of investment COPEL [57]
CSLL 9% over 12% of gross revenue Aquila et al. [42]
IRPJ 25% over 8% of gross revenue Aquila et al. [42]
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