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Abstract
This paper proposes a new multiobjective optimization with elliptical constraints approach for nonlinear models implemented in
a cladding process of ABNT 1020 carbon steel plate using austenitic ABNT 316L stainless steel cored wire. Stainless steel stands
out among the cladding materials as it allows obtaining surfaces with determined desirable characteristics from lower cost
materials. This kind of process may be controlled by a relatively small number of input variables, i.e., the wire feed rate (WF),
voltage (V), welding speed (WS), and the distance from the contact tip to the workpiece (N). Besides that, many outputs can be
evaluated and simultaneously optimized. In the present paper, dilution (D), yield (Y), convexity index (CI), and penetration index
(PI) were investigated. In order to consider the problem’s multivariate nature, techniques such as factor analysis and Bonferroni’s
multivariate intervals were applied combined with elliptical constraints. The response variables were mathematically modeled
using Poisson regression, and the obtained results were satisfactory since accurate models were achieved. The normal boundary
intersection (NBI) method produced a set of viable configurations for the input variables that allows the experimenter to
encounter the best system setup regarding the importance level of each response. Feasible and non-dominated solutions were
found which means that the best possible scenario considering all the constraints was reached.

Keywords Cladding . Design of experiments . Multiobjective constrained optimization . Factor analysis . Simultaneous
confidence intervals

1 Introduction

The use of welding as a manufacturing or maintenance pro-
cess in various segments of the industry has been a milestone
for its growth and strengthening. Industries in general have
been constantly looking for alternatives in order to reduce
costs by minimizing wear and tear in their equipment [1].
For instance, stainless steels are generally deposited on sur-
faces of carbon steels or low alloy steels, producing a layer
with anticorrosive and resistant properties that are necessary to
withstand environments subject to high corrosion. This is one
of the applications of cladding [2].

Cladding process is defined as the deposition of a suffi-
ciently thick layer of some weld metal of interest on a carbon
steel or low alloy surface to make it resistant to corrosion or
wear [3]. It is generally applied to extend the useful life of
parts that do not have all the necessary properties for a specific
application and to recover elements or materials that no longer
have certain characteristics required by the process or are in a
state of wear or corrosion [3–6].

The results of this process have made this application
quite attractive, insofar as surfaces that are resistant to
corrosive environments can be produced from common
materials at a lower cost compared to the use of purely
stainless steel components. It guarantees the reuse of the
original material that would go for disposal, and it may
result in a manufacturing cost reduction, besides making
the process more sustainable [7–9]. This technique ex-
tends among the most diverse types of industries, as oil,
chemical, food, agricultural, nuclear, naval, railway, and
civil construction [6, 10].
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Comparing the cladding process with conventional
welding applications, the main difference is the impor-
tance of the weld bead geometry. In conventional appli-
cations, high penetration is desirable to guarantee the
strength of the welded joint, whereas in cladding, the de-
sired bead geometric profile must have large widths, high
reinforcements, low penetrations, and low percentages of
dilution, which represents the penetration area divided by
the total welded area [11, 12]. Low dilution values are
desirable to maintain the chemical composition of the fill-
er metal and, consequently, its resistance to corrosion
[13–15]. According to some researchers, this is one of
the main characteristics to ensure the final quality of the
claddings [12, 16–18]. Then, recovering the largest area
as possible with the fewest number of welding passes
results in significant savings in regard to the resources,
such as welding time and inputs.

However, the results of the cladding of carbon steel
with stainless steel are not only limited to obtaining the
desired geometric profile. The industrial environments are
increasingly demanding processes capable of combining
minimum quality requirements with high levels of pro-
ductivity, as a way to guarantee greater results and com-
petitiveness [19, 20].

In view of this, stainless steel stands out among the
cladding materials as it allows obtaining surfaces with
determined desirable characteristics from lower cost ma-
terials [21]. This brings the motivation for the objective of
this paper, which involves covering an ABNT 1020 car-
bon steel surface using ABNT 316L stainless steel tubular
wire. Among the process variables, the wire feed rate,
voltage, welding speed, and the distance from the contact
tip to the workpiece are commonly found in the literature
as influence factors [22].

The choice to use tubular wire welding was justified by the
fact that it provides consistent advantages to the objectives of
this study, such as the acquisition of high deposition rates, less
waste of the electrode, greater flexibility of the process, high
quality of the weld, and excellent control of the fusion pool
[23, 24].

Response surface methodology is used in order to optimize
the responses related to the cladding process such as those
considered in this work: dilution, yield, convexity index, and
penetration index. Many other techniques are also applied to
solve the multivariate optimization problem in this paper, for
instance, normal boundary intersection, Poisson regression,
simultaneous confidence intervals, and factor analysis. It is
worth mentioning that these tools have been used successfully
in the literature for the modeling and analysis of welding pro-
cesses [6, 10–13, 25, 26]. Furthermore, the application of
multivariate constraints and the Poisson regression to model
the responses stands out as the main contribution of the pres-
ent work as can be seen in the next section in more details.

2 Related work

Experimental research has acquired considerable importance
in organizational research, mainly due to two facts. The first
concerns the strength of this method of investigation in
allowing the researcher tomake strong statements of causality.
The second fact of the importance of experimental research
concerns the facility that the researcher who employs experi-
mental projects (or designs) finds to establish cause and effect
relationships, making the experiment to be considered a re-
search design model [27].

Several works, whose main goal is to optimize manufactur-
ing process, can be found in the literature, such as [28–31].
The authors commonly apply techniques such as factor anal-
ysis, normal boundary intersection (NBI), and response sur-
face methodology (RSM) for multiobjective optimization.

A study to understand how the metal inert gas (MIG) pro-
cess parameters affect the geometric characteristics of a 6063-
T5 aluminum alloy weld bead is developed in [28]. The ex-
perimental design consisted of three variables (power of the
source, welding speed, and separation between the edges of
the base metal), with three levels each, and then nine experi-
ments were performed according to an orthogonal Taguchi
array. The study identified the optimal values for the input
parameters in order to maximize the penetration and minimize
the remaining responses, i.e., bead height, root width,
overthickness, perimeter, and area of filler material.

The interactions between the variables of the continuous
drive friction welding (CDFW) process were analyzed at the
junction of AA6063 aluminum tubes in [29]. The authors
applied a full factorial design with three levels for each input
variable (rotation, friction pressure, and friction time on the
final dimensions of the flash and length of the welded piece).
Twenty-seven experiments were run, and the lowest pressure
value produced the specimens with the lowest reduction
values in length and uniform flashes.

In [30], a numerical study of time-temperature-property
curves was developed considering the 6063-T5 aluminum al-
loy plates by using the MIG technique. A Taguchi array was
used with two levels for the two parameters, source power and
welding speed, allowing the optimization of the intersection
area between the cooling curve and the cooling time between
400 and 300 °C.

A new methodology was proposed in [31] to optimize a
multivariate dry end milling process of the AISI 1045 steel.
The considered parameters were the feed per tooth, axial depth
of cut, cutting speed, and radial depth of cut. It was possible to
encounter the input combination which led to maximum ma-
terial removal rate and minimum surface roughness, through
techniques such as normal boundary intersection (NBI) and
multivariate mean square error (MMSE).

Then, it could be observed that some published papers
apply a design of experiments and multivariate techniques
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and even hybrid approaches such as NBI-MMSE.
Nevertheless, in multivariate problems, where two or more
responses are being simultaneously optimized, some addition-
al caution may be taken in order to consider the possible cor-
relation between the output variables, since feasible values for
one variable might not occur simultaneously with feasible
values for another output variable because of the correlation
structure.

Thus, the new approach of this study is to use Bonferroni’s
multivariate intervals to establish the limits that the responses
may assume in the optimization problem. Elliptical constraints
will also be used considering the variance and covariance
structure of the responses. The responses will be modeled,
initially, using the method of ordinary least squares (OLS),
and then, the resulting quadratic residues will be modeled
using Poisson regression. In this sense, the weighted least
squares algorithm could be applied to the original responses,
increasing the model adjustments.

3 Background and literature review

3.1 Response surface methodology

Response surface methodology (RSM) is a design of experi-
ment (DOE) technique to model and analyze complex prob-
lems in which an optimal response is sought for a variable of
interest influenced by so many other process variables [32].

Since this methodology is practical, economical, and easy
to implement [33], it is widely applied in the industrial sector,
mainly in scenarios where the quality of the product or pro-
cess, or even the performance measures, is influenced by
many input variables [34] and because this relationship is
typically unknown [35].

Costa et al. [31] applied the multivariate optimization using
the RSM to a dry milling process of AISI 1045, considered
more sustainable than the conventional milling process, since
it does not use cutting fluids. Lu and Xu [36] used this meth-
odology to find the best conditions for a new non-leaching
gold recovery strategy from discarded memory cards. Nasiri
and Arsalani [37] used the RSM to assess the influence of
experimental factors, such as initial dye concentration, contact
time, initial pH, and adsorbent dosage on the efficiency of
removing violet crystals, to subsequently find the optimum
condition of these variables that wouldmaximize the objective
function. However, countless applications available in the lit-
erature prove that, although widely used in industries, its ap-
plication is highly diversified.

RSM depends on the elaboration of an experimental design
to guide, in a more assertive way, through a reduced number
of experiments, the obtaining of real output data process, in
order to make possible the definition of an analytical model
that approximates the accurate relationship between the

responses of interest and the decision variables, in some re-
gion of interest [34].

According to [38], the second-order polynomial presented
in Eq. (1) satisfactorily represents the problems for the re-
sponse surface. In the equation, Y represents the answer of
interest to the problem, β represents the coefficients to be
estimated, k indicates the number of independent variables, x
represents the parameters, and, finally, ε represents the error
associated with the responses. The coefficients are estimated
using the widely used regression method called ordinary least
squares (OLS) [39–41].

Y ¼ β0 þ ∑
k

i¼1
βixi þ ∑

k

i¼1
βiix

2
i þ ∑

i< j
∑βijxix j þ ε ð1Þ

The quadratic design named central composite design
(CCD) for k factors is extensively used to estimate second-
order response surfaces [31]. It consists of a resolution V
fractional factorial arrangement or a 2k factorial design, added
with nc central points and 2k axial points [34]. Its representa-
tion can be seen in the CCD (Fig. 1).

Some analysis must be carried out to guarantee the adequa-
cy of the models to the process in question. High values of

coefficients such as R2 and R2
adj that are obtained through the

ANOVA technique, for example, indicate a good level of fit
for the model [34]. Montgomery [32] also states that an anal-
ysis of normality of residues can ratify the information obtain-
ed in ANOVA.

Whether the models have adequate fit and residuals, this
becomes sufficient for the subsequent application of a
multiobjective optimization algorithm to define the optimum
point, or the set of optimal points, that will determine the
optimal operating conditions for the process.

3.2 Multiobjective optimization

Multiobjective optimization is an approach used to deal with
scenarios where more than one characteristic of the process
needs to be optimized simultaneously and can be generically
described by Eq. (2) [42].

Fig. 1 CCD for 3 factors representation
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min
x∈C

F xð Þ ¼
f 1 xð Þ
f 2 xð Þ
⋮
f n xð Þ

2
64

3
75; n > 2; … MOPð Þ ð2Þ

C ¼ x : h xð Þ ¼ 0; g xð Þ≤0; a≤x≤bf g
where a and b are the limits that restrict the solution space and
h(x) and g(x) characterize the equality and inequality con-
straints, respectively.

According to the principle established by Pareto, a
multiobjective problem does not offer a single optimal solution,
due to the existing trade-off relationship between the character-
istics of the system, but a set of solutions called Pareto optimal.
That is, there is no solution x∗ such that all of the objective
functions fi(x) are minimized at the same time [42].

To deal with this issue, methods such as the normal bound-
ary intersection (NBI) generate a border containing feasible
solutions, called Pareto optimal, making the problem analysis
within the industry more practical and visual [43].

The main contribution of the NBI method is the construc-
tion of a balanced Pareto boundary with optimal equidistant
solutions, which exceeds the performance of the least squares
method. The general formulation for a problem to be solved
by the NBI can be written as a restricted nonlinear program-
ming and can be seen in Eq. (3) [42].

max
x;t

t

s:t:Φβþ tbn ¼ F xð Þ
hi xð Þ ¼ 0
g j xð Þ≤0
a≤x≤b

ð3Þ

where in the first constraint Φβþ tbn ¼ F xð Þ, Φ represents
the normalized payoff matrix, β indicates the vector of
weights for each, t corresponds to a scalar that is perpendicular
to the utopia line, and F xð Þ is the vector of dimensioned
objective functions [21].

For the payoffmatrix compositionΦ, the functions must be
individually optimized so that the ith line of the matrix pre-
sents, in its position Φii, the optimal value of fi(x

∗). The re-
maining positions of this same line show the values of the
other functions evaluated in the ith optimal point x*i . This
ensures that the diagonal of the matrix contains all the optimal
values of the individual functions involved in the problem
[41–44].

TheΦmatrix, in turn, is obtained from the normalization of
each of the positions of the original payoff matrix. The utopia
vector contains the individual optimal of all functions, such

that f U ¼ f *1 x*1
� �

;…; f *i x*i
� �

;…; f *m x*m
� �� �

T . This generally
does not characterize a viable scenario for the process [21].

The nadir vector contains the worst possible value for all
functions, among the values found in Φ, so that

f N ¼ f N1 ;…; f Ni ;…; f Nm
� �T

. Thus, the normalized matrix Φ
will be obtained from Eq. (4) [45].

f i xð Þ ¼ f i xð Þ− f Ui
f Ni − f

U
i

" #
ð4Þ

In this way, it is possible to observe the general composi-

tion of the matrices Φ and Φ through Eqs. 5 and 6.

Φ ¼

f *1 x*1
� �
⋮

f *i x*1
� �

…
⋱
…

f *1 x*i
� �

… f *1 x*m
� �

⋮ ⋮
f *i x*i
� �

… f *i x*m
� �

⋮ ⋮ ⋱ ⋮
f *m x*1

� �
… f *m x*i

� �
… f *m x*m

� �

2
66664

3
77775 ð5Þ

Φ ¼

f
*

1 x*1
� �
⋮

f
*

i x*1
� �

…
⋱
…

f
*

1 x*i
� �

… f
*

1 x*m
� �

⋮ ⋮

f
*

i x*i
� �

… f
*

i x*m
� �

⋮ ⋮ ⋱ ⋮

f
*

m x*1
� �

… f
*

m x*i
� �

… f
*

m x*m
� �

2
66666664

3
77777775

ð6Þ

Therefore, for bi-objective scenarios, the classic NBI for-
mulation represented by Eqs. (3) and (4) and matrix (6) can be
rewritten according to Eq. (7). For the Pareto frontier con-
struction, this problem is solved iteratively by applying differ-
ent weights [45].

min
x

F xð Þ ¼ f 1 xð Þ
s:t: f 1 xð Þ− f 2 xð Þ þ 2β1−1 ¼ 0

x∈Ω
g j xð Þ≤0
hjþ1 xð Þ ¼ 0

ð7Þ

3.3 Poisson regression

When the response variable of interest is not normally distrib-
uted, and it represents a count of some relatively rare event,
Poisson regression is a technique that is possible to be applied.
In these cases, a probability model can be obtained as shown
in Eq. (8) where μi and yi represent the mean and the ith
observation, respectively [46].

f yið Þ ¼ e−μiμi
yi

yi!
ð8Þ

According to the same author, the Poisson model is written
in terms of the mean response. It is necessary to suppose that
there is a function g, which establishes the relationship
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between the mean and a linear predictor as in Eq. (9). The
function g is called link function.

g μið Þ ¼ ηi ¼ β0 þ β1x1 þ…þ βkxk ¼ xTi β ð9Þ

Thus, Eq. (10) will give the relationship between the mean
and the linear predictor.

μi ¼ g−1 ηið Þ ¼ g−1 xTi β
� � ð10Þ

A function commonly used for the Poisson distribution

is the log link, that is, μi ¼ ex
T
i β. This is very useful in

Poisson regression problems because it provides only
nonnegative predictions for the response variable.
Besides, the maximum likelihood method is used to esti-
mate the unknown parameters. Considering a sample of n
observations, where y is the response of interest and x
represents the predictors, then the likelihood function
can be written as shown in Eq. (11) [46].

L β; yð Þ ¼ ∏
n

i¼1

e−μiμi
yi

yi!
¼

∏
n

i¼1
μiexp − ∑

n

i¼1
μi

� �

∏
n

i¼1
yi!

ð11Þ

After selecting the link function, the log-likelihood shown
in Eq. (12) is maximized.

lnL β; yð Þ ¼ ∑
n

i¼1
yiln μið Þ− ∑

n

i¼1
μi− ∑

n

i¼1
ln yi!ð Þ ð12Þ

Once the estimates of the parameters are encountered, the
prediction equation will be as in Eq. (13) if the log link func-
tion was chosen.

byi ¼ g−1 xTi b
� � ¼ exp xTi b

� � ð13Þ

3.4 Simultaneous confidence intervals

In multivariate problems, constructing simultaneous confi-
dence intervals is more sophisticated than simply analyzing
individual intervals, since the first considers the correlation
structure of the analyzed responses.

Let X have an Np(μ,Σ) distribution, and Z is the linear
combination aTX, where aT is a constant vector. Then, Z
has an Np(a

Tμ, aTΣa) distribution. Regarding an available
random sample of X, it is possible to replace μ and Σ with x
and S, respectively. For a given a, the 100(1-α)% confidence
interval is based on Eq. (14) [47].

t ¼ z−μz

sz=n
¼

ffiffiffi
n

p
aTx−aTμ

	 

ffiffiffiffiffiffiffiffiffiffi
aTSa

p ð14Þ

which leads to Eq. (15).

aTx−tn−1 α=2ð Þ
ffiffiffiffiffiffiffiffiffiffi
aTSa

p
ffiffiffi
n

p ≤aTμ≤aTxþ tn−1 α=2ð Þ
ffiffiffiffiffiffiffiffiffiffi
aTSa

p
ffiffiffi
n

p ð15Þ

Considering a determined dataset and a vector a, the
confidence interval is the set of values for aTμ that
satisfies Eq. (16).

t2 ¼
n aTx−aTμ
	 
2

aTSa
≤ t2n−1 α=2ð Þy ð16Þ

Thus, according to the Cauchy-Schwarz inequality, maxi-
mizing t2 in terms of vector a leads to Eq. (17), where T2 is the
Hotelling statistic and c2 is a constant larger than t2.

max
a

n aT x−μ
	 
	 
2

aTSa
¼ n x−μ

	 
T
S−1 x−μ

	 

¼ T 2≤c2 ð17Þ

When c ² = p(n − 1)Fp, n − p(α)/(n − p), it is possible to en-
counter the intervals that contain aTμ for all awith probability
1 −α = P[T ² ≤ c²] as shown in Eq. (18).

aTX−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p n−1ð Þ
n n−pð Þ Fp;n−p αð ÞaTSa

s
≤μ≤aTX

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p n−1ð Þ
n n−pð Þ Fp;n−p αð ÞaTSa

s
ð18Þ

In order to find the confidence interval for each mean,
simply assume aT = [1, 0, …, 0], aT = [0, 1, …, 0], and so
on. Then, Eq. (19) can replace Eq. (18).

xp−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spp n−1ð Þp
n n−pð Þ Fp;n−p αð Þ

s
≤μ≤xp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
spp n−1ð Þp
n n−pð Þ Fp;n−p αð Þ

s
ð19Þ

An alternative method for multiple comparisons that
can be applied in multivariate problems when the number
of component means is small is the Bonferroni method.
Applying this method, the intervals are shorter and more
precise than previously presented. Equation (20) shows
how to calculate them [47].

xp−tn−1
α
2p

� � ffiffiffiffiffiffi
spp
n

r
≤μp≤xp þ tn−1

α
2p

� � ffiffiffiffiffiffi
spp
n

r
ð20Þ

Figure 2 depicts how the Bonferroni intervals are shorter
than the simultaneous T2 intervals (shadows). These ellipsoids
were constructed using the cladding data presented in this
paper.
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The ellipsoid shown in Fig. 3 and all the other confidence
ellipsoids for the mean of the variables presented in this paper
were constructed according to Eq. (21) found in [21], where μyi
indicates the mean of the variables; p and n are the number of
variables and the number of data, respectively; F is the statistic
associated with α significance level; λi represents the eigen-
values; eij represents the elements of the matrix composed of
the eigenvectors; and θ is an angle varying from 0 to 2π.

μy1
μy2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p n−1ð Þ
n n−pð Þ F p;n−pð Þ αð Þ �

ffiffiffiffiffi
λ1

p
0

0
ffiffiffiffiffi
λ2

p� �
� e11 e12

e21 e22

� �s
� cosθ

senθ

� �

ð21Þ

On the other hand, the ellipsoids for the data are created
following Eq. (22).

μy1
μy2

� �
þ c� e11 e12

e21 e22

� �
�

ffiffiffiffiffi
λ1

p
0

0
ffiffiffiffiffi
λ2

p� �
� cosθ

senθ

� �
ð22Þ

3.5 Factor analysis

Grouping variables highly correlated, resulting in high correla-
tion values within the formed groups and small correlation

values between different groups, this is the argument that mo-
tivates the factor analysis (FA). The main purpose of this tech-
nique is to express the covariance relationships among distinct
variables in terms of unobservable variables called factors [47].
Factor analysis can be considered an extension of the principal
component analysis (PCA). Nevertheless, a great difference is
that in PCA the principal components (PCs) are written in terms
of the standardized variables, whereas in FA the variables are
written in terms of the uncorrelated factors.

According to [48], in the factor analysis model, a problem
with m observed variables may lead to unobserved scores for
the p factors with m > p. That is, the main function of the
different factor analysis techniques is to reduce a large number
of variables observed in a fewer number of factors [49], and
define the factor as the linear combination of the original
(statistics) variables.

Let X be an observable vector with p components, mean
vector μ, and covariance matrix Σ. Hence, X will be linearly
dependent upon the uncorrelated variables F1, F2, …, Fm

(common factors) and ε1, ε2, …, εp (specific factors).
Equation (23) represents the factor analysis model according
to [47], where lij represents the loadings, explained later in this
section.

X 1−μ1 ¼ l11F1 þ l12F2 þ…þ l1mFm þ ε1
X 2−μ2 ¼ l21F1 þ l22F2 þ…þ l2mFm þ ε2
⋮ ⋮
X p−μp ¼ lp1F1 þ lp2F2 þ…þ lpmFm þ εp

ð23Þ

Consider that F and ε are the matrices containing the com-
mon and specific factors, respectively. Also, assuming that
E(F) = 0; Cov(F) = E[F’F] = I; E(ε) = 0, Cov(ε) = E[ε
ε’] =Ψ, which is a diagonal matrix whose elements in the
main diagonal are ψ1, ψ2, …, ψp, and finally that Cov(ε,
F) = E(εF’) = 0, hence the orthogonal model can be estimated
as shown in Eq. (24) in matrix notation [47].

X p�1ð Þ ¼ μ p�1ð Þ þ L p�mð ÞF m�1ð Þ þ ε p�1ð Þ ð24Þ

where μi and εi represent the mean and the specific factor of
the ith variable, respectively. Fj is the jth common factor and lij

0.270.260.250.240.230.22

0.33

0.32

0.31

0.30

0.29

0.28

0.27

0.26

Penetration index

D
ilu

tio
n

0.220 0.265

0.270

0.320

0.218 0.268

0.268

0.323

Fig. 2 Simultaneous Hotelling and Bonferroni intervals

Fig. 3 Weld bead geometry (a),
union of the welded joint
(conventional applications) (b)
[23]
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is the loading of the ith variable on the jth factor. Thus, this
model implies that the covariance structure can be written as
shown in Eq. (25).

∑ ¼ Cov Xð Þ ¼ E X−μð Þ X−μð ÞT
∑ ¼ LE FFT� �

LT þ E εFT� �
LT þ LE FεT

� �þ E εεT
� �

∑ ¼ LLT þΨ
ð25Þ

In this sense, from Eq. (2), the variance and the covariance
of the original variables can be written as in Eq. (26).

ð26Þ

I t c a n a l s o b e d r a w n t h a t C o v (X , F ) =
E(X-μ)FT = LE(FFT) + E(εFT) = L. Thus, it is possible to
state that the loading (lij) represents the covariance between
the observations of the ith variable and the jth factor.

The principal component estimation method is commonly
used in factor analysis. Usually p variables are written as lin-
ear combinations of m factors with m< p. This results in the
following approximation for the variance-covariance matrix
as in Eq. (27), which is known as the principal component
solution when applied to sample variance-covariance matrix
S or to the sample correlation matrix R [47].

ð27Þ

3.6 Factor mean square error

It is common to represent more than one response var-
iable by just one factor using factor analysis. However,
it might happen that variables represented by the same
factor are conflicting in terms of optimization direction,
which means that the same factor may explain a vari-
able to be maximized and a variable to be minimized.
Paiva et al. [50] proposed an approach to deal with this
type of problem called multivariate mean square error
(MMSE) using principal component analysis.

In the present paper, the factor analysis is applied, and it
proposed the factor mean square error (FMSE), which is based
on MMSE previously mentioned, but considering factor anal-

ysis. Equation (28) is used to calculate the FMSE, where bFi

xð Þ represents the fitted value for the ith factor, Ti is the target
calculated for this factor, and λi is the variance associated with
the factor.

FMSEi ¼ bFi xð Þ−Ti

h i2
þ λi ð28Þ

In order to calculate target of each factor, Eq. (29) must be
used.

Ti ¼ LiZ ð29Þ

Li is the vector of loadings related to the ith factor, and Z is
a vector of standardized values. Each value of Z is calculated
as shown in Eq. (30), where μj, ζj, and σj are the mean value,
the individual target, and the standard deviation of the jth
variable, respectively.

Z ¼ μ j−ζ j

σ j

� �
ð30Þ

4 Methodology

The present paper introduces a new approach to solve multi-
variate problems. The methodology was applied in a cladding
process of ABNT 1020 carbon steel plate using austenitic
ABNT 316L stainless steel cored wire performed in [22].
The authors ran 31 designed experiments from a central com-
posite design following the stages of the response surface
methodology presented in [32]. The input parameters and their
respective levels are presented in Table 1.

The investigated responses in the present paper are the
dilution (D), yield (Y), penetration index (PI), and convexity
index (CI).D represents the ratio between the penetration area
and the total area (penetration and reinforcement). Y is the
ration between the deposition rate and the fusion rate. The
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two considered indexes are calculated considering the geo-
metric characteristics of the weld bead. PI is calculated divid-
ing the penetration by the thickness of the sheet, whereas CI is
calculated dividing the reinforcement by the width.

In order to illustrate the concepts previously mentioned, Fig.
3 depicts the geometry of a weld bead, where P represents the
penetration,W is the width, R is the reinforcement, and A and B
are the reinforcement and penetration areas, respectively.

The methodology itself is based on incorporating multivar-
iate intervals and elliptical constraints to the multiobjective op-
timization problem. The Poisson regression technique is also
applied in order to model the squared residuals from the OLS
models for the factors and the original variables. Figure 4 de-
picts the complete methodology used in this paper, and a short
explanation about its stages can be found in this section. It is
important to highlight that this methodology is only applicable
when dealing with multivariate data, i.e., correlated data.

A. Evaluate the correlation

Initially, the correlation structure of the dataset must be
evaluated. Frequently many correlated variables are treated

as uncorrelated, and it may lead to erroneous conclusions
about the problem. Thus, it is necessary to calculate the cor-
relation between all pairs of variables as well as the p values
associated. Usually, Pearson correlation is applied.

B. Factor analysis

Considering correlated variables, a multivariate tech-
nique such as factor analysis can be applied in order to
replace the original variables by unobservable variables,
i.e., rotated factor scores. The correlation between the
factors and the original variables determines the loading
values, which indicate how much a factor is able to ex-
plain a certain variable. However, the correlation between
each pair of factors is always zero.

C. OLS models

The investigated responses are modeled using traditional
algorithms such as ordinary least squares (OLS), and the re-
siduals of the models must be stored.

Table 1 Parameters considered in
the cladding process and their
respective levels

Parameters Abbreviation Levels

−2 −1 0 1 2

Wire feed rate (m/min) WF 5.5 7.0 8.5 10.0 11.5

Arc voltage (V) V 24.5 27.0 29.5 32.0 34.5

Welding speed (cm/min) WS 20.0 30.0 40.0 50.0 60.0

Contact tip to the workpiece distance (mm) CT 10.0 15.0 20.0 25.0 30.0

Fig. 4 Methodology for multiobjective optimization considering multivariate constraints
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D. Poisson models for the residuals

Next, the squared residuals are modeled through Poisson
regression according to Eq. (13). The fitted values for the
squared residuals are also stored.

E. Poisson models for original variables

The weight W ¼ 1=be2i is calculated, where e2i represents
the residuals stored in the phase D. The full quadratic models
for the original variables are now obtained through weighted
Poisson regression.

F. Individual optimization

Once these models are estimated, it is possible to obtain the
individual optimal values for the original variables. It is im-
portant to mention that DR, PI, and RI must be minimized,
whereas Y is the only response to be maximized. With the
values generated by the optimization, the payoff matrix is
constructed according to Eq. (5).

G. Multivariate analysis

In this phase, Bonferroni’s simultaneous intervals are cal-
culated according to Eq. (20). The confidence ellipsoids for
the mean data are also calculated as shown in Eq. (21). It is
important to consider them because the data are correlated,
which means that the variables vary together, and therefore,
a value for a certain variable may never occur simultaneously
with a value for another correlated variable even though both
values are feasible.

H. Payoff adaptation

After the multivariate analysis, it is necessary to adapt the
payoff matrix calculated in H considering the multivariate
constraints from the previous step.

I. Multiobjective optimization

The factor mean squared error (FMSEi) function is calcu-
lated for the i factors encountered in phase B using Eq. (28).
Finally, the NBI method can be applied in order to calculate
the Pareto frontier and evaluate the results.

5 Results

This section presents the results obtained in each phase of the
previously explained methodology.

A. Evaluate the correlation

The data used in this paper was originated from the cladding
process previously presented in [22]. The authors performed 31
designed experiments as shown in Table 2. The correlation
structure in the data can be observed in Table 3, where a p value
less than 0.05 represents a significant correlation value.

B. Factor analysis

The factor analysis was performed using the Minitab soft-
ware considering the correlation matrix, the rotation varimax,
and the principal components as the extraction method. Two
factors were able to explain 85.4% of the variability in the
data. Table 4 shows the rotated factor scores for each run of
the CCD, which means that the data are now represented by
two uncorrelated factors.

The factors are highly correlated with the variables that
they represent as can be viewed in Table 5 that shows the
loading for each factor, the communalities, the variance, and
the percentage of explained variance.

C. OLS models

Both the factors and the original variables can be modeled
using ordinary least squares algorithm. The models for each
response and the values for R2 and R2adjusted can be viewed in
Eqs. (31)–(36).

F1 ¼ 0:3438þ 0:0639�WF þ 0:5141� V þ 0:4070�WS � 0:7481� CT
�0:1828� V2 > �0:2613�WS2 þ 0:1979�WF � V−0:1872�WF � CT
R2 ¼ 92:60%
R2
adj ¼ 89:91%

ð31Þ

F2 ¼ −0:817þ 0:2975�WF þ 0:2005� V−0:5628�WS−0:4625� CTþ
2200�WF2 þ 0:3339� V2 þ 0:1926�WS2 þ 0:3089� CT2 þ 0:3120�WF � CT
R2 ¼ 87:90%
R2
adj ¼ 80:90%

ð32Þ
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Table 4 Rotated factor scores

Run WF V WS CT F1 F2

1 7 27 30 15 −0.4531 0.9042

2 10 27 30 15 −0.1923 0.8868

3 7 32 30 15 0.5620 1.2391

4 10 32 30 15 1.0148 1.1115

5 7 27 50 15 0.8539 −0.5561
6 10 27 50 15 0.6755 −0.2029
7 7 32 50 15 0.5524 1.8591

8 10 32 50 15 1.7601 1.1175

9 7 27 30 25 −1.1691 0.3931

10 10 27 30 25 −2.1802 0.9238

11 7 32 30 25 −0.7856 0.4393

12 10 32 30 25 −1.1706 1.0636

13 7 27 50 25 −1.0923 −1.9190
14 10 27 50 25 −1.5015 0.2353

15 7 32 50 25 −0.2185 −1.5622
16 10 32 50 25 0.3338 −0.4149
17 5.5 29.5 40 20 0.1927 −0.9542
18 11.5 29.5 40 20 0.7142 0.6540

19 8.5 24.5 40 20 −1.5190 0.1492

20 8.5 34.5 40 20 1.0960 0.4613

21 8.5 29.5 20 20 −1.5335 1.0158

22 8.5 29.5 60 20 0.4820 −1.5354
23 8.5 29.5 40 10 1.5992 1.1801

24 8.5 29.5 40 30 −1.0994 −0.7695
25 8.5 29.5 40 20 0.6179 −1.1780
26 8.5 29.5 40 20 0.5933 −0.5640
27 8.5 29.5 40 20 0.3935 −0.9132
28 8.5 29.5 40 20 0.8063 −0.6474
29 8.5 29.5 40 20 0.1235 −0.6605
30 8.5 29.5 40 20 0.2395 −0.8451
31 8.5 29.5 40 20 0.3044 −0.9114

Table 5 Factor analysis summary

Variable Factor 1 Factor 2 Communality

D 0.9475 −0.0403 0.899

PI 0.9099 0.1714 0.857

CI −0.7295 −0.4110 0.701

Y −0.1029 −0.9735 0.958

Variance 2.2684 1.1475 3.4159

% Var 0.567 0.287 0.854

Table 2 Designed experiments and values for the investigated
responses

Run WF V WS CT D Y CI PI

1 7 27 30 15 0.2644 0.8974 0.2349 0.2165

2 10 27 30 15 0.2582 0.8971 0.2398 0.2616

3 7 32 30 15 0.3149 0.8914 0.1966 0.2660

4 10 32 30 15 0.3125 0.8947 0.1846 0.3113

5 7 27 50 15 0.3622 0.9158 0.2350 0.2593

6 10 27 50 15 0.3369 0.9070 0.2677 0.3049

7 7 32 50 15 0.3712 0.8743 0.2118 0.2422

8 10 32 50 15 0.4108 0.8836 0.2107 0.3434

9 7 27 30 25 0.2246 0.9049 0.2780 0.1969

10 10 27 30 25 0.1832 0.8947 0.3145 0.1574

11 7 32 30 25 0.2371 0.9060 0.2528 0.2081

12 10 32 30 25 0.2196 0.8981 0.2384 0.1733

13 7 27 50 25 0.2496 0.9403 0.3196 0.1750

14 10 27 50 25 0.2331 0.9017 0.3243 0.1930

15 7 32 50 25 0.2877 0.9352 0.2788 0.2157

16 10 32 50 25 0.3019 0.9174 0.2397 0.2578

17 5.5 29.5 40 20 0.3156 0.9262 0.2434 0.2177

18 11.5 29.5 40 20 0.3095 0.8952 0.2502 0.3369

19 8.5 24.5 40 20 0.2284 0.9041 0.3211 0.1897

20 8.5 34.5 40 20 0.3558 0.9004 0.2103 0.2936

21 8.5 29.5 20 20 0.1858 0.9027 0.2313 0.1492

22 8.5 29.5 60 20 0.3578 0.9308 0.2652 0.2256

23 8.5 29.5 40 10 0.4044 0.8815 0.2225 0.3431

24 8.5 29.5 40 30 0.2416 0.9205 0.3136 0.2020

25 8.5 29.5 40 20 0.3105 0.9304 0.2399 0.2690

26 8.5 29.5 40 20 0.3167 0.9191 0.2373 0.2713

27 8.5 29.5 40 20 0.3088 0.9251 0.2471 0.2556

28 8.5 29.5 40 20 0.3283 0.9198 0.2351 0.2837

29 8.5 29.5 40 20 0.2999 0.9215 0.2464 0.2339

30 8.5 29.5 40 20 0.3109 0.9240 0.2467 0.2346

31 8.5 29.5 40 20 0.3102 0.9258 0.2419 0.2369

Table 3 Correlation
structure D Y CI

Y −0.1070
0.5650

CI −0.5840 0.3690

0.0010 0.0410

PI 0.8180 −0.2900 −0.6010
0.0000 0.1140 0.0000

Pearson correlation (above) and p value
(below)
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D ¼ 0:31034−0:00282�WF þ 0:02493� V þ 0:03679� Vs−0:04251� N
−0:00723� T2−0:01229� Vs2 þ 0:00769�WF � V−0:00771�Ws� CT
R2 ¼ 95:55%
R2
adj ¼ 93:93%

ð33Þ

Y ¼ 0:92367−0:00554�WF−0:00274� V þ 0:00613�WS þ 0:00895� CT
−0:00390�WF2−0:00602� V2−0:00238�WS2−0:00632� CT 2

−0:00487�WF � CT−0:00315� V �WS þ 0:00553� V � CT
R2 ¼ 89:12%
R2
adj ¼ 81:87%

ð34Þ

CI ¼ 0:24289þ 0:00108�WF−0:02592� V þ 0:00899�WS þ 0:02696� CT
−0:00490� V2 þ 0:00549� CT2−0:00909�WF � V
R2 ¼ 95:79%
R2
adj ¼ 94:51%

ð35Þ

PI ¼ 0:25706þ 0:01922�WF þ 0:01921� V þ 0:01471�WS−0:03793� CT
−0:01849�WS2 þ 0:01193�WF �WS−0:01572�WF � CT
R2 ¼ 88:64%
R2
adj ¼ 85:18%

ð36Þ

D. Poisson models for the residuals

The residuals from the models of the original variables
were stored, and the squared residuals were modeled using
Poisson regression, obtaining full quadratic models for the
residuals.

E. Poisson models for original variables

Once it was possible to obtain the fitted value of the resid-

uals, the weights W ¼ 1=be2i were easily obtained and used in
the weighted Poisson regression to model the mean of the
original variables. The link function was the log link function

(μi ¼ ex
T
i β ). The models for the original variables estimated

by Poisson regression can be viewed in Eqs. (37)–(40).

D ¼ exp Y
0
D

	 

Y

0
D ¼ −1:1642−0:0059�WFþ 0:0931� V þ 0:1203�WS−0:1526� CT

þ0:0006�WF2−0:0326� V2−0:0609�WS2−0:0117� CT2

þ0:0174�WF � V þ 0:0001�WF � ES−0:0069�WF � CT þ 0:0017� V �WS
þ0:0049� V � CT−0:0144�WS � CT
R2 ¼ 99:37%
R2
adj ¼ 99:26%

ð37Þ

Y ¼ exp Y
0
Y

	 

Y

0
Y ¼ −0:0794−0:0057�WF−0:0022� V þ 0:0075�WS−0:0107� CT

þ0:0048�WF2−0:0063� V2−0:0021�WS2−0:0063� CT2

þ0:0011�WF � V þ 0:0019�WF �WS−0:0046�WF � CT þ 0:0051� V �WS
þ0:0054� V � CT−0:0064�WS � CT
R2 ¼ 98:35%
R2
adj ¼ 97:12%

ð38Þ
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CI ¼ exp Y
0
CI

	 

Y

0
CI ¼ −1:4186þ 0:0040�WF−0:1033� V þ 0:0329�WS þ 0:1100� CT

þ0:0028�WF2 þ 0:0161� V2 þ 0:0045�WS2−0:0117� CT2

þ0:0356�WF � V−0:0065�WF �WS−0:0033�WF � CT þ 0:0064� V �WS
þ0:0125� V � CT−0:0001�WS � CT
R2 ¼ 99:90%
R2
adj ¼ 99:88%

ð39Þ

PI ¼ exp Y
0
PI

	 

Y

0
PI ¼ −1:3665þ 0:0855�WFþ 0:0767� V þ 0:0907�WS−0:1665� CT

þ0:0076�WF2 þ 0:0065� V2−0:0866�WS2−0:0018� CT 2

þ0:0038�WF � V þ 0:0730�WF �WS−0:0692�WF � CT−0:0180� V �WS
þ0:0017� V � CT−0:0308�WS � CT
R2 ¼ 98:33%
R2
adj ¼ 98:17%

ð40Þ

F. Individual optimization

The next step is to calculate the individual targets for
each variable considering the models constructed through
Poisson regression. The payoff matrix obtained is shown
in Table 6, where each line represents a variable and in
the main diagonal (in bold) are the individual optimum
values for each one of them.

G. Multivariate analysis

In a multivariate problem, the variables vary together; thus,
it is necessary to consider the correlation within each pair of
variables as constraints to the multiobjective problem.
Initially, an ellipse for each of these pairs was constructed
considering the mean values of the variables and the original
data as depicted in Figs. 5, 6, 7, and 8 considering the signif-
icance level α equal to 5%.

The red lines in the ellipses represent the multivariate con-
fidence intervals of Bonferroni.

H. Payoff adaptation

The individual variables were optimized one more time,
but now Bonferroni’s intervals were used as constraints. An
elliptical inequality was also used as constraint in order to
consider the multivariate aspect of the problem according to
Eq. (41).

bY−M	 
T
Σ−1 bY−M	 


≤χ2
1−α;p ð41Þ

where bY is the vector of estimated values for the investigated
variables,M is the vector of mean values,Σ−1 is the inverse of
the variance-covariance matrix of the data, and finally χ2

1−α;p

represents a value which results in the probability 100(1-α)%
to a chi-square distribution with p degrees of freedom. The
current payoff matrix, after adding the aforementioned con-
straints, is depicted in Table 7.

Table 6 First payoff matrix

Response Payoff matrix

D 0.1760 0.2637 0.3702 0.1788

Rend 0.8916 0.9511 0.8824 0.8935

IC 0.2823 0.2998 0.1808 0.2748

IP 0.1317 0.1915 0.3581 0.1287 Fig. 5 Ellipse for the data in red, ellipse for the mean in green, and
Bonferroni intervals for CI and D with α = 5%
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From this matrix, it is possible to obtain the vector of indi-
vidual optimal values ϕT = [0.27040.91630.23550.2204].

I. Multiobjective optimization

After this, it is necessary to calculate the FMSEi functions
according to Eq. (28) previously presented. The factor models,
as previously shown in Eq. (31) and Eq. (32), were obtained
through OLS algorithm. The targets for F1 and F2 were re-
spectively equal to 0.5216 and 0.2939 after solving Eq. (29). It
is important to highlight that the targets for the original vari-
ables were extracted from the updated payoff matrix. In this
sense, the multiobjective problem was solved using the NBI
method. Table 8 shows the optimal values for each NBI sub-
problem varying the weight (β) from Eq. (7).

Figure 9 depicts the Pareto frontier for the problem.
Table 9 presents the uncoded values for the input factors

related to each NBI subproblem.

6 Conclusions

The presented paper aimed to explore a new methodology
applied in a cladding process of ABNT 1020 carbon steel plate
using austenitic ABNT 316L stainless steel cored wire.
Poisson regression was applied to generate the mathematical
models for the investigated responses dilution, yield, penetra-
tion index, and convexity index, in terms of the input variables
wire feed rate, arc voltage, welding speed, and contact tip to
the workpiece distance.

Fig. 6 Ellipse for the data in red, ellipse for the mean in green, and
Bonferroni intervals for CI and Y with α = 5%

Fig. 7 Ellipse for the data in red, ellipse for the mean in green, and
Bonferroni intervals for D and PI with α = 5%

Fig. 8 Ellipse for the data in red, ellipse for the mean in green, and
Bonferroni intervals for CI and PI with α = 5%

Table 7 Updated payoff matrix

Response Payoff matrix

D 0.2704 0.3078 0.3049 0.2704

Y 0.9119 0.9163 0.9158 0.9163

CI 0.2440 0.2357 0.2355 0.2355

PI 0.2329 0.2651 0.2637 0.2204

Table 8 Optimal values for the original variables

Β FMSE1 FMSE2 D Y CI PI

0.00 2.3579 1.1475 0.2848 0.9023 0.2355 0.2651

0.10 2.3404 1.1482 0.2910 0.9021 0.2355 0.2651

0.20 2.3227 1.1475 0.2889 0.9060 0.2355 0.2651

0.30 2.3051 1.1475 0.2963 0.9069 0.2355 0.2651

0.40 2.2884 1.1535 0.3057 0.9080 0.2355 0.2651

0.50 2.2826 1.2309 0.3082 0.9113 0.2355 0.2651

0.60 2.2792 1.3238 0.3100 0.9133 0.2355 0.2651

0.70 2.2766 1.4218 0.3117 0.9148 0.2355 0.2651

0.80 2.2744 1.5228 0.3135 0.9161 0.2355 0.2651

0.90 2.2725 1.6259 0.3171 0.9163 0.2355 0.2651

1.00 2.2710 1.7312 0.3200 0.9163 0.2367 0.2651
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The results were satisfactory since accurate models with
high values for R2 and R2

adjusted were achieved. The new con-
straints were added to the multiobjective optimization prob-
lem since they guarantee that the experimenter will consider
the simultaneous variation among the variables. By using tra-
ditional methods, the researcher may obtain values for the
response variables that, although possible to occur individual-
ly, would not be feasible in practice. Once the covariance
between the variables is not considered, the multivariate na-
ture of the problem is neglected which may incur in erroneous
conclusions.

The NBI method produced a set of viable configura-
tions for the input variables that allows the experimenter
to encounter the best system setup regarding the impor-
tance level of each response. It is important to highlight
that the solutions are feasible and non-dominated which
means that they represent the best possible scenarios con-
sidering all the constraints.
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