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Abstract: The welding process in aluminum is not a simple task to carry out. Problems such as 

weld bead discontinuity, cracks, and lack of penetration commonly occur in this kind of process. 

Thus, it is extremely necessary to have an accurate specification of the parameters in order to 

achieve optimal values for the investigated responses. In view of this, the present paper proposes 

the application of a multiobjective optimization approach considering multivariate constraints 

based on the simultaneous confidence intervals and the elliptical region of the correlated data. 

Structured experiments for the welding process of aluminum alloy (AA) 6063 TA tubes used in 

corona rings were performed according to a face centered composite design with 4 factors, wire 

feed rate (Wf), arc voltage (V), contact tip to the workpiece distance (Ct) and motor frequency (Fr), 

resulting in 31 experiments. Poisson regression was applied to model the values of yield (Y), 

dilution (D), reinforcement index (RI) and penetration index (PI), allowing to estimate the optimal 

individual values with regards to the multivariate constraints. Rotated factor scores were obtained 

in order to replace the original data and therefore the factor multivariate square error was used as 

objective functions to be minimized through normal boundary intersection method. It was possible 

to observe that a satisfactory weld bead with large values of PI, D and Y and a small value of RI, 

was reached as pre specified by the manager of the process. 

 

Keywords: Aluminum welding . Design of experiments . Multiobjective constrained optimization 
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1. Introduction 

Corona rings are used to improve the performance of the insulator strings. They reduce corona 

discharges as well as associated audible noise level, and radio and television interference levels. 

Corona rings do also improve the voltage distribution along the insulator string by reducing the 

percentage of the voltage on the nearest unit to the power transmission line. Moreover, they also 

alleviate corona degradation of non-ceramic materials. They are toroidal shaped metallic rings 

which are fixed at the end of bushings and insulator strings. They are also called as anti-corona 

rings, and they are used to prevent corona discharge that occurs in high-voltage power lines. This 

discharge, or corona loss, is a significant issue in very high voltage power lines, causing power loss. 

One way to reduce corona discharge is using corona rings [1, 2]. Insulators for voltages above 132 

kV should be equipped with corona rings as part of insulation system [3].  

Constraints and better operating conditions are necessary for better efficiency and 

organizational effectiveness in the management of the Gas Metal Arc Welding (GMAW) process, 

better known as Metal Inert Gas (MIG) welding, of anti-corona protection rings. Considering a 
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project of a Brazilian company, these rings are manufactured using aluminum alloy (AA) 6063 T4. 

Specifically for this study, a tube with diameter of 100 mm and thickness of 2 mm was used. The 

company manufactures other designs of anti-corona rings, with different diameters and thicknesses, 

but in the same material with the same characteristics and properties (AA6063 T4). 

The use of aluminum is due to its weight, since it is lighter when compared with other 

metals, and because AA 6063 presents an electrical conductivity that satisfies the projects of 

companies such as the electric energy segment, consumers of this kind of product. 

Among studies such as [4–7], special attention has been given to the welding of different 

aluminum alloys, whose usage by the energy industry is extremely intense due to good corrosion 

resistance, good mechanical properties and excellent electrical conductivity.  

Aluminum welding is a really complex task and requires well defined parameters to present 

a satisfactory result, with no defects such as porosity, cracks, lack of penetration, lack of fusion,  

filling failures, etc. Miguel et al. in [8], established a control methodology for GMAW welding 

based on the response surface methodology (RSM) considering two parameters, penetration and 

length of the heat affected zone (HAZ). The experimental methodology for measuring both 

variables allowed to get better adjusted models than those obtained in other studies [8]. 

In [5], whose main objective was the optimization of the HAZ, RSM was exploited. This 

method allowed the optimization of the response function, subjected to different independent 

variables after modelling the influence of these variables with a minimum number of experiments. 

A sequential strategy was carried out in order to obtain the maximum amount of information with 

minimum effort. Once the variables influencing the response have been identified, the response 

surface was obtained and used as a reference to gradually vary the input variables that affect the 

response to improve its value. 

Furthermore, in [9], an experimental design is presented for a GMAW welding process to 

maximize the amount of information with the following characteristics: response surface-based 

modelling (RSM) to quantify response variables of interest; statistical model selection to obtain the 

most informative models; statistical model checking for definitive models to ensure inference 

capabilities; and multiobjective optimization to identify the Pareto front of optimal solutions. 

Several papers found in literature [5, 6, 9–12] use techniques such as factor analysis, normal 

boundary intersection (NBI) and RSM for multiobjective optimization. However, they combine 

NBI and multivariate mean square error (MMSE), disregarding multivariate constraints. 

In view of this, the present paper is motivated and justified by the need of obtaining better 

technical results, elimination of welding defects, optimization of the resources and reduction of 

waste in the MIG welding process in aluminum alloy (AA) 6063 T4 tubes, 100 mm in diameter 

with a 2 mm wall thick. As previously discussed, this is the main raw material for manufacturing 



anti-corona protection rings, used by several companies in the electric energy segment during the 

assembly of medium and high voltage circuit breakers. Thus, this work proposes a new approach 

of the methodology developed in [13] for multiobjective optimization in the MIG welding process 

of corona rings, since the most important response had its range defined by the manager of the 

process what influenced in stablishing the range of the other correlated responses. 

A face centered composite design with 4 factors, wire feed rate (Wf), arc voltage (V), contact 

tip to the workpiece distance (Ct) and motor frequency (Fr), resulting in 31 experiments, was used. 

The values of yield (Y), dilution (D), reinforcement index (RI) and penetration index (PI) was 

modeled, allowing to estimate the optimal individual values. Hence, the methodology presented 

here incorporates simultaneous confidence intervals and elliptical constraints to the multiobjective 

optimization problem. Poisson regression technique is also applied in order to model the squared 

residuals from the ordinary least square (OLS) models for the original variables and the original 

variables themselves.  

The next sections are organized according to the following: section 2 presents a theoretical 

review of the main concepts applied in the present paper; section 3 illustrates the materials and 

methods applied; in section 4 the main findings are presented; and finally, section 5 presents a 

conclusion about the work. 

 

2. Background and literature review 

2.1. Aluminum alloy (AA) 6063  

As discussed in [14], aluminum alloys are divided into workable alloys, i.e., those that 

undergo hot or cold mechanical working process, and cast alloys, i.e., where the final shape 

of the part is obtained by casting process. To classify workable and cast alloys, the Aluminum 

Association uses numerical designations that identify the class, the main alloying element, 

and modifications of the alloy within the class [15]. Table 1 exemplifies the designation 

system adopted for workable aluminum alloys. Cast aluminum alloys are classified by a 

similar process. 

Table 1. Main series of workable aluminum alloys according to the Aluminum Association [14]  

Series Main alloying elements 

1XXX Commercially pure aluminum >99% purity (non-heat treatable) 
2XXX Copper (heat treatable) 
3XXX Manganese (non-heat treatable) 
4XXX Silicon (non-heat treatable) 
5XXX Magnesium (non-heat treatable) 
6XXX Magnesium and Silicon (heat treatable) 
7XXX Zinc (heat treatable) 
8XXX Other elements 
9XXX Not used 



According to [16], 6xxx aluminum alloy has high content of Mg and Si elements, but 

shedding of α-(AlMnFeSi) inclusion phase will lead to uneven strength distribution and increase 

cracking risk [17]. The content of Si element is positively correlated with the probability of 

liquefaction at the grain boundary [18, 19]. After welding, the heat treatment process should be used 

to reduce the amount of aging precipitates [20]. 

As defined by [21], AA 6063 is an aluminum alloy, with the elements of magnesium and 

silicon alloy. The Aluminum Association maintains the standard to control its composition. It 

generally has good mechanical properties and can be heat treated and welded. It is similar to the 

HE9 aluminum alloy in Britain. It is the most common alloy used for aluminum extrusion. It allows 

the formation of complex shapes with very smooth surfaces suitable for anodizing and is therefore 

popular for visible architectural applications, such as window frames, door frames, roofs and 

signage frames. Applications that require higher strength generally use 6061 or 6082. The chemical 

composition of AA6063 is shown in Table 2. 

Table 2. Chemical composition of AA6063 [21] 

Elemento % 

Al 98,05% 
Si 0,20% 
Fe 0,35% 
Cu 0,10% 
Mg 0,90% 
Mn 0,10% 
Cr 0,10% 
Zn 0,10% 
Ti 0,10% 

 

2.1. Multiobjective optimization 

Industrial processes generally involve an expressive number of goals that are expected to be 

optimized simultaneously. Although it is not always up to be reached, this characteristic does not 

need be neglected, since there is a pool of techniques available to perform a multiobjective 

optimization (MO) that allows the problem to be threaten in a more lifelike behavior [22]. 

According to [23], the multiobjective optimization is a decision-making tool capable of dealing 

with situations where multiple characteristics of the process need to be optimized at the same time. 

A generical way to describe it is shown in Eq. (1), where 𝑎 and 𝑏 ensure the solution space limitation 

and ℎ(𝒙) is related to the equality constraint, whereas 𝑔(𝒙) refers to the inequality constraint. 

 



min𝑥∈𝐶 𝐹(𝑥) = [𝑓1(𝑥)𝑓2(𝑥)⋮𝑓𝑛(𝑥)] , 𝑛 > 2, … (𝑀𝑂𝑃) 
 

(1) 

 𝐶 = {𝑥: ℎ(𝑥) = 0, 𝑔(𝑥) ≤ 0, 𝑎 ≤ 𝑥 ≤ 𝑏} 
 

It is easy to infer that optimizing a scenario with multiple conflicting objectives will lead 

not to a single best solution, but to a set of solutions. Once there is a trade-off relationship between 

different characteristics of the system, one solution will be more connected with the better 

performance of determined system answer, while a second one will be driven to another attribute 

and so on [23]. This whole group of solutions is called Pareto optimal [24]. 

NBI method, applied in [25, 26], generate an even spread feasible solutions – the Pareto 

curve [23] –, that overcomes the deficiencies from the Least Squares method, and through which it 

is possible to analyze the context in a more practical and visual way [11, 27]. A general manner for 

representing a NBI formulation is presented Eq. (2) [23], by means of a restricted nonlinear 

programming. 

 max𝑥,𝑡 𝑡 

                                       (2) 

𝑠. 𝑡. 𝚽̅𝜷 + 𝐷𝒏̂ = 𝑭̅(𝒙) ℎ𝑖(𝒙) = 0 𝑔𝑗(𝒙) ≤ 0 𝑎 ≤ 𝒙 ≤ 𝑏 

 

where 𝜱̅ indicates the normalized pay-off matrix, 𝜷 is the vector of weights, 𝐷 represents a scalar 

that is perpendicular to the utopia line and 𝑭̅(𝒙) contemplates the vector of dimensioned objective 

functions [28]. 

The pay-off matrix 𝚽, as shown in Eq. (3), comes from the establishment of the individual 

minima for one objective function, so that this i-th optimal point 𝑥𝑖∗ is also applied in the remaining 

functions. This procedure is repeated until all the objective functions were examined. In this way, 

the position Φ𝑖𝑖 from all the matrix lines shows the optimal value of 𝑓𝑖(𝑥∗), while the remaining 

positions present the values of the other functions evaluated in 𝑥𝑖∗, line by line. The values from the 

main diagonal are then used to normalize the objective functions and this is a useful strategy when 

dealing with different variables scales or units [11, 23, 27, 29]. 

 



𝚽 = [  
  𝑓1∗(𝑥1∗)⋮𝑓𝑖∗(𝑥1∗) …⋱… 𝑓1∗(𝑥𝑖∗) … 𝑓1∗(𝑥𝑚∗ )⋮                  ⋮𝑓𝑖∗(𝑥𝑖∗) … 𝑓𝑖∗(𝑥𝑚∗ )⋮  ⋮       ⋱        ⋮𝑓𝑚∗(𝑥1∗) … 𝑓𝑚∗(𝑥𝑖∗) … 𝑓𝑚∗(𝑥𝑚∗ )]  

  
 (3) 

 

To normalize the original values from the 𝚽 matrix, two vectors are constructed, one 

containing the optimal values resulting from the individual optimization of all the objective 

functions and another composed by their worst possible values. The first vector is called Utopia 

while the second one is the Nadir and there are represented by Eq. (4) and Eq. (5), respectively [11, 

30]. 𝑓𝑈 = [𝑓1∗(𝑥1∗), … , 𝑓𝑖∗(𝑥𝑖∗), … , 𝑓𝑚∗(𝑥𝑚∗ )]𝑇                                        (4)              𝑓𝑁 = [𝑓1𝑁, … , 𝑓𝑖𝑁, … , 𝑓𝑚𝑁]𝑇                                        (5) 

 

Once theses vectors are available, the Eq. (6) can be applied to generate the normalized pay-

off matrix 𝜱̅ shown in Eq. (7). 𝑓𝑖̅(𝒙) = [𝑓𝑖(𝒙) − 𝑓𝑖𝑈𝑓𝑖𝑁 − 𝑓𝑖𝑈 ] (6) 

 

𝚽̅ = [  
  𝑓1̅∗(𝑥1∗)⋮𝑓𝑖̅∗(𝑥1∗)

…⋱… 𝑓1̅∗(𝑥𝑖∗) … 𝑓1̅∗(𝑥𝑚∗ )⋮                  ⋮𝑓𝑖̅∗(𝑥𝑖∗) … 𝑓𝑖̅∗(𝑥𝑚∗ )⋮  ⋮       ⋱        ⋮𝑓𝑚̅∗(𝑥1∗) … 𝑓𝑚̅∗(𝑥𝑖∗) … 𝑓𝑚̅∗(𝑥𝑚∗ )]  
  
 (7) 

 

where 𝑓𝑖̅(𝒙) indicates the normalized version of the objective function 𝑓𝑖(𝒙). 
The generic formulation presented in Eq. (2) can be simplified, leading to the formulation 

for bi-objective scenarios, as depicted in Eq. (8). 

 min𝑥 𝐹(𝑥) = 𝑓1̅(𝑥) 

                                        (8) 

𝑠. 𝑡. 𝑓1̅(𝑥) − 𝑓2̅(𝑥) + 2𝛽1 − 1 = 0 𝑥 ∈ Ω 𝑔𝑗(𝒙) ≤ 0 ℎ𝑗+1(𝒙) = 0 

RSM can be applied to help on modelling and analyzing the objective function 𝑓𝑖(𝒙) capable 

of explaining a system’s response of interest that is influenced by several variables and that is 

involved in the multiobjective optimization scenario. Since RSM is a type of design of experiment 



(DOE), it comprises a set of mathematical and statistical techniques that allows investigating and 

modelling complex problems from a relatively small group of runs [31], making it widely spread in 

the industry, consequence of its easy and economical way to implement [32]. 

 Diverse applications of RSM are available in the literature, including a wide range of 

industrial processes. The study performed in [33] applied the RSM, among other techniques, to 

characterize the Ultrasonic-assisted drilling process of Aluminum 6061, that is known to be better 

when compared with conventional drilling, since it applies high-frequency vibrations with low 

amplitudes. Another study explored the squeeze casting process capability for casting AA2026 

alloy, by investigating, through the RSM, the influence of squeeze pressure, die temperature and 

pouring temperature on surface roughness, ultimate tensile strength, and hardness [34]. 

 Natarajan et.al. in [35] combined RSM and Desirability function approach to maximize 

metal removal rate while minimizing surface roughness, considering the spindle speed, feed rate 

and depth of cut as the cutting parameters. In [36], RSM was applied jointly with the global criterion 

method to find the optimal values for the parameters effective welding time, effective welding 

current, quenching time, and upslope time of the resistance spot welding process of the 22MnB5-

galvannealed steel. Saad et.al. [37], in turn, aiming to find the optimal parameter settings for the 

best surface roughness of the FDM printed part possible, applied different techniques such as 

particle swarm optimization, and symbiotic organism search, besides the response surface 

methodology.  

Usually, a second order polynomial is sufficient to represent the problems for the response 

surface. Its general equation, as depicted in Eq. (9), includes the response of interest (𝑌), the 

coefficients to be estimated (𝛽), the 𝑙 independent variables (𝑥𝑙), and the associated errors (𝜀) [31, 

38]. 

𝑌 = 𝛽0 + ∑𝛽𝑖𝑥𝑖𝑙
𝑖=1 + ∑𝛽𝑖𝑖𝑥𝑖2 +𝑙

𝑖=1 ∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀𝑖<𝑗  (9) 

 

OLS is the regression method used to estimate the 𝛽 coefficients [11]. The achievement of 

an analytical model with a high adequacy is intimately connected to quality of the process real 

output data collected. On behalf of it, a good experimental design must be planned so that can help 

guaranteeing these results through a minimal number of experiments [31]. 

The Central Composite Design (CCD) consists of a 2𝑘 factorial design, 𝑛𝑐 central runs and 2𝑘 axial runs as exemplified in Fig. 1. The axial points are useful and necessary when the 2𝑘 design 

is not efficient on fitting a first-order model, since through them it is possible to incorporate the 

quadratic terms into the model [31, 38]. The adequacy or not of the models can be ascertained 

through the 𝑅2 and 𝑅𝑎𝑑𝑗2  coefficients, obtained by running an ANOVA test and also the residues 



normality analysis [11, 30, 31, 38]. 

Figure 1. CCD for (a) 2 and (b) 3 factors [31] 

 

Basically, the region of operability and interest determines the value for the axial distance 

α, that may vary from 1 to √𝑘. Considering contexts where the ranges on the design variables are 

strict, making the region of the interest equals to the region of operability, the region for the design 

may be a square, a cube or a hypercube, rather than the well-known spherical region. This 

characterizes a variation of CCD, called the Face-Centered Cube (CCF), since the axial points lie 

at the centers of the faces, as shown in Fig. 2 where a CCF for 𝑘 = 3 is illustrated. It is easy to see 

that, in this variation 𝛼 = 1, i.e., there is no experiments located outside the cube, but, rather, at the 

extremes of the region. The CCF meets effectively cases of cuboidal design region and it has no 

limitations regarding to the number of design variables. A crucial point on determining about the 

suitability of a CCF relies on checking whether the axial points outside the ranges are viable, and 

then if they must be considered or not for the region of interest [31, 38]. 

 

 
Figure 2. CCF for 3 factors 



2.2. Poisson loglinear model 

Poisson regression is an invaluable technique that should be applied when it comes to interest 

variables that are not normally distributed, representing a count of an event. A generalized linear 

model (GLM) states that a linear predictor is related to the mean (𝜇𝑖) for a link function g, that is, 𝜂𝑖 = 𝑔(𝜇𝑖), where 𝜂𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗𝑝𝑗=1  or 𝜂𝑖 = 𝒙𝒊𝑻𝜷 [39]. 

The likelihood equations for a GLM as demonstrated in [39] is shown in Eq. (10) with 𝑗 =1,2,… , 𝑝, where p is the number of variables. 

 ∂L(β)𝜕𝛽𝑗 = ∑(𝑦𝑖 − 𝜇𝑖)𝑥𝑖𝑗  𝑣𝑎𝑟(𝑦𝑖) 𝜕𝜇𝑖𝜕𝜂𝑖 = 0  𝑛
𝑖=1  (10) 

 

For a GLM that assumes a Poisson random component and use the log link function, a link 

function commonly used for this type of models [40], the Poisson loglinear model could be written 

as shown in Eq. (11). 

log(𝜇𝑖) = ∑𝛽𝑗𝑥𝑖𝑗𝑝
𝑗=1 = 𝜂𝑖 (11) 

 

This implies that 𝜇𝑖 = exp (𝜂𝑖), and consequently that 
𝜕𝜇𝑖𝜕𝜂𝑖 = exp(𝜂𝑖) = 𝜇𝑖, which means 

that 𝑣𝑎𝑟(𝑦𝑖) = 𝜇𝑖. Then, the likelihood equations in Eq. (10) can be simplified as in Eq. (12) with 𝑗 = 1,2,… , 𝑝 [39]. 

∑(𝑦𝑖 − 𝜇𝑖)𝑥𝑖𝑗𝑛
𝑗=1 = 0 (12) 

 

Once the parameters are encountered, the predictions of a Poisson loglinear model can be 

calculated as shown in Eq. (13) [40]. 𝑦𝑖̂ = 𝑔−1(𝒙𝒊𝑻𝒃) = exp (𝒙𝒊𝑻𝒃) (13) 

 

2.3. Multivariate analysis 

In dealing with correlated responses, it is important to consider the problem as a multivariate one 

[41]. This means that the variables vary concomitantly, and it is recommended to analyze them 

through simultaneous confidence intervals. A deeper explanation about this concept may be found 

in [13, 42]. 

In [42], a sophisticated way called the Bonferroni method is presented as an alternative 

approach to obtain these intervals as shown in Eq. (14).  



𝑥̅𝑝 − 𝑡𝑛−1 ( 𝛼2𝑝)√𝑆𝑝𝑝𝑛 ≤ 𝜇𝑝 ≤ 𝑥̅𝑝 + 𝑡𝑛−1 ( 𝛼2𝑝)√𝑆𝑝𝑝𝑛  (14) 

 

where the mean value of the original variables is represented by 𝑥̅𝑝, the term 𝑡𝑛−1 ( 𝛼2𝑝) represents 

the t value associated to a distribution with 𝑛 − 1 degree of freedom that leads to a probability 

equals to 𝛼/2𝑝, where 𝛼 is the significance level, and p the number of considered components. 

Finally, 𝑆𝑝𝑝 is the variance associated to the p component and n is the number of observations. 

For two correlated variables it is possible to construct an ellipsoid for their means according 

to Eq. (15) [43]. It is worth mentioning that 𝜇𝑦𝑖 is the mean of the variables, p is the number of 

variables being considered (in this case 𝑝 = 2, since the equation is used to construct a 2D 

ellipsoid), n is the number of observations of the variables, F is the statistic associated with 

significance level 𝛼 and two degree of freedom (𝑝 and 𝑛 − 𝑝), 𝜆𝑖 and 𝑒𝑖𝑗  represent the eigenvalues 

and the elements of the matrix composed of the eigenvectors, respectively, and finally θ is an angle 

that varies from 0 to 2π. 

 

[𝜇𝑦1𝜇𝑦2] + √𝑝(𝑛 − 1)𝑛(𝑛 − 𝑝)𝐹(𝑝,𝑛−𝑝)(𝛼) × [√𝜆1 00 √𝜆2] × [𝑒11 𝑒12𝑒21 𝑒22] × [𝑐𝑜𝑠𝜃𝑠𝑒𝑛𝜃] (15) 

 

Similarly, an ellipsoid for the original data may also be constructed applying Eq. (16), which 

results in a larger ellipsoid than the one for the means. 

[𝜇𝑦1𝜇𝑦2] + 𝑐 × [𝑒11 𝑒12𝑒21 𝑒22] × [√𝜆1 00 √𝜆2] × [𝑐𝑜𝑠𝜃𝑠𝑒𝑛𝜃] (16) 

 

It is also possible to observe the Bonferroni confidence intervals in Fig. 3 in which is 

depicted the green ellipsoid constructed using Eq. (15) and the blue one using Eq. (16). 

Nevertheless, in some situations, it is preferrable to work with uncorrelated variables instead 

of the original correlated ones. Principal component analysis (PCA) and factor analysis are 

indicated for these cases. According to [42], factor analysis can be considered an extension of PCA, 

since both strategies attempt to estimate the variance-covariance matrix (𝚺) of a multivariate dataset. 

However, factor analysis provides a more elaborated approximation of 𝚺. In addition, in PCA each 

principal component is written as a function of the original variables whereas, in factor analysis, 

each original variable is written as a function of the latent variables, that is, the factors. 



 
Figure 3. Ellipsoid for the mean, showing the Bonferroni intervals, and for the original data 

The orthogonal factor model, in which p distinct variables are well explained by m factors, 

where 𝑚 < 𝑝 can be observed in Eq. (17) in matrix notation. X is a random vector (𝑝 × 1) with p 

components, 𝝁 is its mean vector (𝑝 × 1) and 𝚺 is its variance-covariance matrix (𝑝 × 𝑝). Moreover, 

L indicates the vector of loadings (𝑝 × 𝑚), whose values 𝑙𝑖𝑗 represent the correlation of the ith 

variable with the jth factor, F represents the vector of unobservable variables (common factors) 

(𝑚 × 1), and finally, 𝜺 is the source of variation, which means the vector of errors (𝑝 × 1). 

𝑿 = 𝝁 + 𝑳𝑭 + 𝜺 (17) 

 

It is worth mentioning that 𝐸(𝑭) = 0, 𝐶𝑜𝑣(𝑭) = 𝐼 and 𝐸(𝜺) = 0, 𝐶𝑜𝑣(𝜺) = 𝚿, where 𝚿 

is a diagonal matrix. In addition, the model previously shown in Eq. (X) implies that the covariance 

structure for X can be written as in Eq. (18) [42]. 

𝚺 = 𝐶𝑜𝑣(𝑿) = 𝐸(𝑿 − 𝝁)(𝑿 − 𝝁)′
     = 𝑳𝐸(𝑭𝑭′)𝑳′ + 𝐸(𝜺𝑭′)𝑳′ + 𝑳𝐸(𝑭𝜺′) + 𝐸(𝜺𝜺′)     = 𝑳𝑳′ + 𝚿 

(18) 

In view of this, it is possible to work with uncorrelated rotated factor scores instead of the 

original correlated variables in an optimization problem. However, in some cases, a factor explains 

different variables with distinct optimization direction. This conflict in the optimization direction 

can be overcome by using Eq. (19), which presents the factor mean square error (FMSE) developed 

in [44] as an extension of the multivariate mean square error (MMSE) proposed in [45].  



FMSEi = [𝐹̂𝑖(𝒙) − 𝑇𝑖]2 + 𝜆𝑖 (19) 

It is worth mentioning that 𝐹̂𝑖 indicates the fitted value for the i-th factor, 𝑇𝑖 represents the 

target and 𝜆𝑖 is the variance associated to the factor. The target of the i-th factor can be obtained 

through the product 𝒁′𝑳𝒊, where is the loading vector of the factor and Z is calculated subtracting 

the individual target of each original variable from its mean and diving this result by the standard 

deviation of the variable, as shown in Eq. (20). 

𝑍𝑗′ = (𝜁𝑗 − 𝜇𝑗𝜎𝑗 ) (20) 

 

3. Materials and methods 

The present paper aims to optimize the welding process of aluminum tubes, that take part in corona 

rings, regarding some variables such as Y, RI, D and PI. It is important to highlight that RI was 

obtained as the ratio between the height of the weld bead and its width. D is the ration between 

penetration area or internal area (IA) and total area, which is defined by the sum of IA and the 

reinforcement area or external area (EA), of the weld bead. Finally, PI is ratio between the 

penetration height and the thickness of the material being welded.  

To calculate the actual deposition yield - Y, it was necessary to weigh 1 meter of ER4043 

wire (linear mass), with 1.2 mm in diameter, used to calculate the total mass. Before and after the 

completion of each weld, the specimens were weighed, obtaining the value of the initial mass (IM), 

mass of the specimen before welding, and final mass (FM), mass of the specimen after welding and 

after cleaning to remove spatter. 

Some factors that possibly have great influence on the welding process were stated in Table 

3 after some research in the literature [5, 8, 46, 47]. Their levels were also established not only 

according to the values found in literature, but mainly according to some experiments performed 

by the authors. 

Table 3. Parameters considered in the welding process and their respective levels 

Factor Abbreviation Level -1 Level +1 

Wire feed rate (m/min) Wf 3.0 3.4 

Arc Voltage (V) V 20 23 

Contact tip to the workpiece distance (mm) Ct 8 16 

Rotation frequency (Hz) Fr 1.8 2.2 

 
Next, a CCF with 31 runs was applied in order to perform the experiments. The MIG 

welding process of the specimens was carried out with an Aristo Power 460 welding machine - 



ESAB brand - with an external wire feeder. Some devices were used to hold the torch and the part, 

as depicted in Fig. 4. It is possible to state that the welding process was performed in a semi-

automatic way, since the torch and the part were static and a person was responsible just for 

triggering the torch.  

 

 

Figure 4. Semi-automatic welding process structure 

The experiments were performed as homogeneous as possible, that is, using the same 

machine, the same welding inputs, the same person triggering the torch, and the same structure. 

Only the welding parameters (controllable variables) were possible to be changed. 

The machine was created to weld parts that have the same profile as the object of this study. 

For this purpose, an aluminum plate was machined and an axis was welded to it with the inner 

diameter of the tube of 100mm, so that this tube could remain fixed during the welding process. In 

addition, a frequency inverter was connected to the machine's motor, in order to start the motor and 

control the welding speed. The rotation of the part to be welded was due to interlocking pulleys and 

belts that made the plate rotate. As can be sees in Fig. 4, the arm that supports the torch and a clamp, 

fixed the torch using allen screws. With these measures, it was possible to maintain the distance 

parameters and the best possible regulation for carrying out the experiments. 

The specimens were welded randomly according to CCF. Next, they were cut, treated and 

submitted to metallographic analysis of images in the laboratories of the Federal University of 

Itajubá, under the supervision of specialized personnel.  

Regarding the welding process, the upper and the lower parts of the tube were put over a 

small cylindric piece consisted of the same base metal (aluminum) aiming to hold these parts of the 

tube, making them concentric, allowing more accurate weld as in a bushing process. It is possible 

to observe the internal part of the tube in Fig. 5. 



 

Figure 5. Inside view of the specimen and the cylindric piece 

Each cylindric specimen, as depicted in Fig. 5, was cut into four quadrants that were, 

afterwards, subdivided into small parts. One of these, from each quadrant, was selected to go 

through the resin mounting process, resulting in a final mounted specimen consisting of four parts 

as shown in Fig. 6. Still in Fig. 6, it is possible to observe part of the welded tube and the weld bead 

(upper), the cylindric metal piece (lower), and an empty space between the tube and this piece. 

However, it is not a welding defect as it does not interfere in the construction of the corona ring. 

 

Figure 6. Specimen obtained in the runs 01, 07 and 20 of the CCF 

The specimen shown in Fig. X were sanded and put in a keller solution composed of 190 

mL H2O + 5 mL HNO3 (65%) + 3 mL HCl (32%) + 2 mL HF (40%), making possible to see the 

area where the metal was deposited. In Fig. 7, it is possible to observe some images of the weld 

bead and the measurements of the penetration (P), reinforcement (R), internal area (IA), external 

area (EA), width (W), and height (H = R+P). 

 



 
Figure 7. Images obtained from run 3, 9, and 15 of the CCF and their geometry measurements 

 

The analysis of the results followed mainly a recent methodology published in [13]. 

However, an improvement was done in step G. The methodology applied in this paper is presented 

bellow in 9 steps.  

A. Evaluate the correlation structure of the dataset 

B. Perform factor analysis 

C. Generate the models for all of the original responses using OLS 

D. Generate full quadratic models using General Linear Models (Poisson regression) for 

the square residuals 

E. Generate Poisson models for the original variables  

F. Perform individual optimization 

G. Establish the constraints based on simultaneous confidence intervals 

H. Adapt the Payoff matrix 

I. Apply NBI method for the factor mean square error 

The next section presents the results obtained in each step of this methodology. 

 

4. Results 

Initially, all the data obtained through the execution of the 31 experiments are shown in Table 4, 

where the following abbreviations Y, D, RI, and PI stand for yield, dilution, reinforcement index, 

and penetration index, respectively. 

A. Evaluate the correlation structure of the dataset 

The correlation structure of the original variables considered in this paper can be seen in Table 5. 

In this table, the correlation values are shown associated to a p-value in italics. A p-value which is 

less than 0.05 indicates a significant correlation. 

 

 



Table 4. Designed experiments and the values for the investigated responses 

Run 
Wf 

(m/min) 

V 

(V) 

Ct 

(mm) 

Fr 

(Hz) 

Y 

(%) 

D 

(%) 

RI 

(-) 

PI 

(-) 

1 3.00 20.00 8.00 1.80 98.31 60.1778 0.5632 1.1363 
2 3.40 20.00 8.00 1.80 93.07 61.7276 0.4823 1.2363 
3 3.00 23.00 8.00 1.80 91.14 60.7197 0.5648 1.2588 
4 3.40 23.00 8.00 1.80 67.77 62.0990 0.5870 1.5913 
5 3.00 20.00 16.00 1.80 97.29 57.5209 0.5163 1.2913 
6 3.40 20.00 16.00 1.80 90.36 65.1469 0.4958 1.5525 
7 3.00 23.00 16.00 1.80 99.33 70.3952 0.4520 1.1963 
8 3.40 23.00 16.00 1.80 94.88 64.9567 0.4224 1.0775 
9 3.00 20.00 8.00 2.20 82.11 75.3409 0.5201 1.1975 
10 3.40 20.00 8.00 2.20 81.77 66.8018 0.5407 1.2563 
11 3.00 23.00 8.00 2.20 96.19 70.0545 0.4952 1.0863 
12 3.40 23.00 8.00 2.20 86.94 59.2924 0.4715 1.0500 
13 3.00 20.00 16.00 2.20 82.11 69.8114 0.5720 1.1825 
14 3.40 20.00 16.00 2.20 84.87 67.2177 0.4845 1.1413 
15 3.00 23.00 16.00 2.20 93.84 71.7013 0.5562 1.2238 
16 3.40 23.00 16.00 2.20 85.91 64.6680 0.4622 0.9988 
17 3.00 21.50 12.00 2.00 98.41 61.3725 0.5130 1.2452 
18 3.40 21.50 12.00 2.00 77.19 71.2751 0.4594 1.2676 
19 3.20 20.00 12.00 2.00 71.76 71.4314 1.0211 1.4963 
20 3.20 23.00 12.00 2.00 82.01 69.5993 0.6993 1.3200 
21 3.20 21.50 8.00 2.00 71.76 61.9859 0.4433 1.1963 
22 3.20 21.50 16.00 2.00 82.01 73.6002 0.6248 1.3425 
23 3.20 21.50 12.00 1.80 67.20 58.9240 0.9889 1.2800 
24 3.20 21.50 12.00 2.20 54.99 70.9638 0.6815 1.3763 
25 3.20 21.50 12.00 2.00 88.16 70.6565 0.5909 1.1825 
26 3.20 21.50 12.00 2.00 86.11 69.0965 0.5590 1.1338 
27 3.20 21.50 12.00 2.00 94.31 65.8828 0.5841 1.0950 
28 3.20 21.50 12.00 2.00 96.36 61.7419 0.5603 0.9525 
29 3.20 21.50 12.00 2.00 90.21 65.7591 0.5710 1.1525 
30 3.20 21.50 12.00 2.00 82.01 67.8660 0.4264 1.2163 
31 3.20 21.50 12.00 2.00 82.01 64.0694 0.4997 1.1913 

 

 

Table 5. Correlation matrix of the original variables 

 Y D RI 

D -0.201   

 0.278   

RI -0.484 0.077  

 0.006 0.682  

PI -0.494 0.123 0.417 

 0.005 0.508 0.020 

 

 



B. Perform factor analysis 

Factor analysis was performed and the rotated scores of the factors were stored. It is important to 

highlight that varimax rotation was used here since it presents satisfactory results as shown in [48]. 

Table 6 shows the values scores considering 3 factors and 4 original variables. These factors are 

able to explain 88.2% of the variability of the data. 

 

Table 6. Rotated factor scores for each designed experiment 

Run Wf V CT Fr F1 F2 F3 

1 3.00 20.00 8.00 1.80 -0.8286 -0.0590 -1.2966 
2 3.40 20.00 8.00 1.80 0.1592 -0.7504 -0.9590 
3 3.00 23.00 8.00 1.80 0.1672 -0.1648 -1.2167 
4 3.40 23.00 8.00 1.80 2.9331 -0.2198 -0.9940 
5 3.00 20.00 16.00 1.80 0.3945 -0.7208 -1.9338 
6 3.40 20.00 16.00 1.80 2.2376 -1.4006 -0.4800 
7 3.00 23.00 16.00 1.80 -0.3512 -1.1151 0.8347 
8 3.40 23.00 16.00 1.80 -0.8463 -0.8566 -0.1451 
9 3.00 20.00 8.00 2.20 -0.1320 -0.2234 1.9763 

10 3.40 20.00 8.00 2.20 0.3633 -0.1339 0.1471 
11 3.00 23.00 8.00 2.20 -1.0997 -0.4504 0.8533 
12 3.40 23.00 8.00 2.20 -0.8384 -0.1763 -1.2577 
13 3.00 20.00 16.00 2.20 -0.2681 0.2309 0.8091 
14 3.40 20.00 16.00 2.20 -0.3477 -0.3315 0.3285 
15 3.00 23.00 16.00 2.20 -0.3085 -0.3151 1.0733 
16 3.40 23.00 16.00 2.20 -1.2200 -0.1377 -0.0859 
17 3.00 21.50 12.00 2.00 -0.0007 -0.6969 -1.1056 
18 3.40 21.50 12.00 2.00 0.6949 -0.6539 1.1560 
19 3.20 20.00 12.00 2.00 0.9165 2.8736 0.7319 
20 3.20 23.00 12.00 2.00 0.3239 0.7898 0.5842 
21 3.20 21.50 8.00 2.00 0.5736 -0.3561 -0.6602 
22 3.20 21.50 16.00 2.00 0.5947 0.1718 1.4411 
23 3.20 21.50 12.00 1.80 -0.0929 3.4257 -1.6378 
24 3.20 21.50 12.00 2.20 1.4600 1.2374 1.0764 
25 3.20 21.50 12.00 2.00 -0.4973 0.1935 0.9194 
26 3.20 21.50 12.00 2.00 -0.6555 0.1601 0.6704 
27 3.20 21.50 12.00 2.00 -1.1457 0.2431 -0.0551 
28 3.20 21.50 12.00 2.00 -2.0142 0.4141 -0.8084 
29 3.20 21.50 12.00 2.00 -0.6161 0.1197 -0.0815 
30 3.20 21.50 12.00 2.00 0.3661 -0.8557 0.4638 
31 3.20 21.50 12.00 2.00 0.0783 -0.2419 -0.3480 

 

C. Generate models for all of the original responses using OLS 

The original variables and the rotated scores of the factors were initially modeled through OLS 

method and they had their residuals stored and squared to be used in step D. 

 



D. Generate full quadratic models using General Linear Models (Poisson regression) for 

the square residuals 

Poisson regression was used in the present step to model the 4 sets of square residuals from step C 

(each set corresponds to the residuals obtained on the initial model for each original variable). The 

fitted value (𝑒̂) was stored, and the weight, 𝑊 = 1/𝑒̂2, was calculated.  

E. Generate Poisson models for the original variables  

Poisson models for the original variables weighted by W were obtained. Some variables did not 

present good values for R², R²adj, and R²pred in the first interaction of the method. Thus, the steps C 

and D had to be repeated. These models are presented in equations from Eq. (21) to Eq. (24). 

Y = exp(Y′) 𝑌′ = −0.1885 − 0.03875 × 𝑊𝑓 + 0.01604 × 𝑉 − 0.00084 × 𝐶𝑡 − 0.03980 × 𝐹𝑟     +0.1159 × 𝑊𝑓2 − 0.0377 × 𝑉2 − 0.0129 × 𝐶𝑡2 + 0.0251 × 𝐹𝑟2
 +0.00042 × 𝑊𝑓 × 𝑉 + 0.00106 × 𝑊𝑓 × 𝐶𝑡 − 0.00577 × 𝑊𝑓 × 𝐹𝑟 +0.0108 × 𝑉 × 𝐶𝑡 + 0.0159 × 𝑉 × 𝐹𝑟 − 0.0102 × 𝐶𝑡 × 𝐹𝑟 𝑅2 = 93.66% 𝑅𝑎𝑑𝑗2 = 89.59% 

(21) 

D = exp(𝐷′)               𝐷′ = 4.1765 − 0.0301 × 𝑊𝑓 + 0.069 × 𝐹𝑟 − 0.0415 × 𝑊𝑓 × 𝐹𝑟                                    𝑅2 = 95.77% 𝑅𝑎𝑑𝑗2 = 81.58% 

(22) 

RI = exp(𝑅𝐼′)               𝑅𝐼′ = −0.45577 − 0.0437 × 𝑊𝑓 − 0.0319 × 𝑉 − 0.0145 × 𝐶𝑡 + 0.0042 × 𝐹𝑟 −0.3150 × 𝑊𝑓2 + 0.1186 × 𝑉2 − 0.0780 × 𝐶𝑡2 + 0.0474 × 𝐹𝑟2
 −0.0025 × 𝑊𝑓 × 𝑉 − 0.03396 × 𝑊𝑓 × 𝐶𝑡 − 0.0124 × 𝑊𝑓 × 𝐹𝑟 − 0.0005 × 𝑉 × 𝐶𝑡 +0.0092 × 𝑉 × 𝐹𝑟 + 0.0390 × 𝐶𝑡 × 𝐹𝑟 𝑅2 = 99.93% 𝑅𝑎𝑑𝑗2 = 99.90% 

(23) 

PI = exp(𝑃𝐼′)               𝑃𝐼′ = −0.1865 − 0.0017 × 𝑊𝑓 − 0.0178 × 𝑉 + 0.01946 × 𝐶𝑡 − 0.0644 × 𝐹𝑟             −0.0310 × 𝑊𝑓2 − 0.0292 × 𝑉2 + 0.0144 × 𝐶𝑡2 − 0.0103 × 𝐹𝑟2
 +0.0113 × 𝑊𝑓 × 𝑉 − 0.0216 × 𝑊𝑓 × 𝐶𝑡 − 0.0604 × 𝑊𝑓 × 𝐹𝑟 −0.044662 × 𝑉 × 𝐶𝑡 − 0.0357 × 𝑉 × 𝐹𝑟 + 0.0218 × 𝐶𝑡 × 𝐹𝑟 𝑅2 = 99.99% 𝑅𝑎𝑑𝑗2 = 99.99% 

(24) 

 

F. Perform individual optimization 

With the models for the original variables, it is possible to perform the individual optimization for 

them. It is important to highlight that Y, D and PI are variables to be maximized whereas the RI is 



to be minimized, since the reinforcement is removed from the final structure. In view of this, the 

payoff matrix shown in Table 7 was constructed. 

 

Table 7. Payoff matrix considering individual optimization 

Response Payoff Matrix 

Y 100.00 95.81 90.52 89.41 
D 61.1235 74.8885 62.6405 61.5592 
RI 0.5045 0.5143 0.3864 0.5087 
PI 1.2367 1.2274 1.2904 1.5118 

 

G. Establish the constraints based on simultaneous confidence intervals 

At this point it is important to perform some multivariate analyzes. Initially, the ellipsoids for the 

means of each pair of significantly correlated variables were generated using Eq. (15). These 

ellipsoids and the Bonferroni intervals are shown in Fig. 8 and Fig. 9. However, unlikely the 

previous article where this methodology was published, a range for the most important variable was 

established here. PI was chosen as the most relevant variable, since the larger the penetration the 

better the quality of the final product. A range from 1.19 to 1.25 was defined by specialists, and 

therefore all the other variables had to vary according to this range, since they are correlated. Hence, 

the constraints to the variation of the original variables are the variation established as the 

intersection of the green and yellow lines in Fig. 8 and Fig. 9, and these intersections are highlighted 

in red on both axes. 

 

 
Figure 8. Elliptical region for penetration index and yield means with constraints 

 



 
Figure 9. Elliptical region for penetration index and reinforcement index means with constraints 

 

H. Adapt the Payoff matrix 

In order to adapt the payoff matrix, an elliptical constraint was set according to Eq. (25) in addition, 

to the constraints established in step G. The adapted Payoff matrix can be seen in Table 8. 

(𝑌̂ − 𝑀)𝑇 Σ−1(𝑌̂ − 𝑀) ≤ 𝜒1−𝛼,𝑝2  (25) 

Table 8. Adapted Payoff matrix considering elliptical constraints and Bonferroni intervals constraints 

Response Payoff Matrix 

Y 0.8729 0.8286 0.8464 0.8729 
D 62.4427 64.9201 64.3064 62.4427 
RI 0.5183 0.5183 0.5183 0.5183 
PI 1.2500 1.1900 1.1953 1.2500 

 

I. Apply NBI method for the factor mean square errors 

Finally, the factor’s targets were defined according to Eq. (19) and Eq. (20), and therefore the FMSE 

functions for the three rotated score of the factors were modeled. Matrix NBI method was applied, since 

3 functions is being considered. A simplex lattice mixture design, with degree of lattice 10, was applied 

to generate the matrix containing 70 distinct combinations of weights ranged from 0.00001 to 0.99998 

to be used in the NBI. 

  

All the objective functions are to be minimized, since all of them are the FMSE values for the 

three factors. The results are summarized in Table 9 and Table 10. 

 



Table 9. Results of the NBI method part I 

Run w1 w2 w3 FMSE1 FMSE2 FMSE3 Y D RI PI 

1 1.00 0.00 0.00 1.2615 1.4412 1.0308 83.99 63.7328 0.5796 1.2310 
2 0.90 0.10 0.00 1.2644 1.4212 1.0346 83.61 63.6256 0.5978 1.2400 
3 0.90 0.00 0.10 1.2633 1.4370 1.0300 84.14 63.6504 0.5789 1.2326 
4 0.80 0.20 0.00 1.2673 1.4012 1.0384 83.96 63.4573 0.5986 1.2377 
5 0.80 0.10 0.10 1.2662 1.4170 1.0338 84.21 63.7872 0.5692 1.2258 
6 0.80 0.00 0.20 1.2650 1.4328 1.0293 84.22 63.5451 0.5811 1.2356 
7 0.70 0.30 0.00 1.2702 1.3813 1.0422 83.97 63.4347 0.5967 1.2374 
8 0.70 0.20 0.10 1.2691 1.3971 1.0376 84.02 63.4172 0.5966 1.2380 
9 0.70 0.10 0.20 1.2679 1.4128 1.0331 84.30 63.7469 0.5680 1.2267 
10 0.70 0.00 0.30 1.2668 1.4286 1.0285 84.31 63.4791 0.5810 1.2371 
11 0.60 0.40 0.00 1.2732 1.3613 1.0460 84.00 63.3966 0.5978 1.2373 
12 0.60 0.30 0.10 1.2720 1.3771 1.0414 84.03 63.3887 0.5967 1.2378 
13 0.60 0.20 0.20 1.2709 1.3929 1.0369 84.07 63.3738 0.5957 1.2385 
14 0.60 0.10 0.30 1.2697 1.4087 1.0323 83.92 63.6857 0.5765 1.2348 
15 0.60 0.00 0.40 1.2686 1.4244 1.0278 84.38 63.4108 0.5814 1.2388 
16 0.50 0.50 0.00 1.2761 1.3414 1.0498 83.20 63.7125 0.5984 1.2449 
17 0.50 0.40 0.10 1.2749 1.3572 1.0452 84.04 63.3579 0.5967 1.2377 
18 0.50 0.30 0.20 1.2738 1.3729 1.0407 84.08 63.3406 0.5974 1.2382 
19 0.50 0.20 0.30 1.2726 1.3887 1.0361 84.13 63.3276 0.5955 1.2390 
20 0.50 0.10 0.40 1.2715 1.4045 1.0316 84.47 63.5844 0.5689 1.2322 
21 0.50 0.00 0.50 1.2703 1.4203 1.0270 84.45 63.3349 0.5825 1.2406 
22 0.40 0.60 0.00 1.2790 1.3214 1.0536 83.12 63.7241 0.5978 1.2464 
23 0.40 0.50 0.10 1.2778 1.3372 1.0491 83.20 63.6974 0.5955 1.2450 
24 0.40 0.40 0.20 1.2767 1.3530 1.0445 84.09 63.3181 0.5960 1.2380 
25 0.40 0.30 0.30 1.2755 1.3688 1.0399 84.14 63.2945 0.5978 1.2386 
26 0.40 0.20 0.40 1.2744 1.3845 1.0354 84.18 63.2883 0.5942 1.2395 
27 0.40 0.10 0.50 1.2733 1.4003 1.0308 84.55 63.5246 0.5686 1.2340 
28 0.40 0.00 0.60 1.2721 1.4161 1.0263 84.49 63.2472 0.5851 1.2424 
29 0.30 0.70 0.00 1.2819 1.3015 1.0574 83.06 63.7348 0.5990 1.2486 
30 0.30 0.60 0.10 1.2808 1.3172 1.0529 83.12 63.7080 0.5951 1.2466 
31 0.30 0.50 0.20 1.2796 1.3330 1.0483 83.20 63.6811 0.5954 1.2459 
32 0.30 0.40 0.30 1.2785 1.3488 1.0438 84.13 63.2779 0.5955 1.2384 
33 0.30 0.30 0.40 1.2773 1.3646 1.0392 84.18 63.2520 0.5976 1.2390 
34 0.30 0.20 0.50 1.2762 1.3804 1.0346 84.23 63.2340 0.5957 1.2400 
35 0.30 0.10 0.60 1.2750 1.3961 1.0301 84.63 63.4625 0.5685 1.2359 

 

 

 
Table 10. Results of the NBI method Part II 

Run w1 w2 w3 FMSE1 FMSE2 FMSE3 Y D RI PI 

36 0.30 0.00 0.70 1.2739 1.4119 1.0255 84.53 63.1611 0.5879 1.2439 
37 0.20 0.80 0.00 1.2848 1.2815 1.0612 82.99 63.7352 0.5947 1.2498 
38 0.20 0.70 0.10 1.2837 1.2973 1.0567 83.06 63.7204 0.5990 1.2495 
39 0.20 0.60 0.20 1.2825 1.3131 1.0521 83.11 63.6927 0.5961 1.2477 



40 0.20 0.50 0.30 1.2814 1.3288 1.0476 83.24 63.6674 0.5907 1.2456 
41 0.20 0.40 0.40 1.2802 1.3446 1.0430 84.18 63.2376 0.5952 1.2388 
42 0.20 0.30 0.50 1.2791 1.3604 1.0385 84.23 63.2100 0.5973 1.2394 
43 0.20 0.20 0.60 1.2779 1.3762 1.0339 84.68 63.6626 0.5569 1.2271 
44 0.20 0.10 0.70 1.2768 1.3920 1.0293 84.70 63.3987 0.5686 1.2378 
45 0.20 0.00 0.80 1.2756 1.4077 1.0248 84.57 63.0733 0.5911 1.2450 
46 0.10 0.90 0.00 1.2877 1.2616 1.0650 84.67 63.4698 0.5472 1.2338 
47 0.10 0.80 0.10 1.2866 1.2773 1.0605 82.99 63.7171 0.5916 1.2500 
48 0.10 0.70 0.20 1.2854 1.2931 1.0559 83.04 63.7035 0.5975 1.2500 
49 0.10 0.60 0.30 1.2843 1.3090 1.0514 84.59 63.4800 0.5581 1.2336 
50 0.10 0.50 0.40 1.2831 1.3247 1.0469 84.82 63.8623 0.5401 1.2152 
51 0.10 0.40 0.50 1.2820 1.3404 1.0423 84.22 63.1999 0.5945 1.2392 
52 0.10 0.30 0.60 1.2808 1.3562 1.0377 84.28 63.1686 0.5970 1.2398 
53 0.10 0.20 0.70 1.2797 1.3720 1.0332 84.77 63.6218 0.5558 1.2285 
54 0.10 0.10 0.80 1.2786 1.3878 1.0286 84.77 63.3329 0.5688 1.2398 
55 0.10 0.00 0.90 1.2774 1.4036 1.0240 84.64 62.9868 0.5934 1.2461 
56 0.00 1.00 0.00 1.2906 1.2416 1.0688 84.95 63.3446 0.5347 1.2387 
57 0.00 0.90 0.10 1.2895 1.2574 1.0643 84.78 63.4463 0.5440 1.2344 
58 0.00 0.80 0.20 1.2883 1.2732 1.0597 83.01 63.6991 0.5877 1.2500 
59 0.00 0.70 0.30 1.2872 1.2889 1.0552 83.04 63.6846 0.5939 1.2500 
60 0.00 0.60 0.40 1.2861 1.3047 1.0506 83.10 63.6644 0.5988 1.2500 
61 0.00 0.50 0.50 1.2849 1.3204 1.0461 84.90 63.8853 0.5369 1.2131 
62 0.00 0.40 0.60 1.2838 1.3363 1.0415 84.26 63.1569 0.5949 1.2396 
63 0.00 0.30 0.70 1.2826 1.3520 1.0370 84.71 63.3935 0.5639 1.2368 
64 0.00 0.20 0.80 1.2815 1.3678 1.0324 84.86 63.5575 0.5555 1.2309 
65 0.00 0.10 0.90 1.2803 1.3836 1.0279 84.83 63.2646 0.5694 1.2417 
66 0.00 0.00 1.00 1.2792 1.3994 1.0233 85.11 63.3842 0.5590 1.2402 
67 0.33 0.33 0.33 1.2771 1.3607 1.0410 84.14 63.2831 0.5954 1.2387 
68 0.67 0.17 0.17 1.2693 1.4009 1.0359 84.06 63.4017 0.5949 1.2383 
69 0.17 0.67 0.17 1.2839 1.3012 1.0549 83.07 63.7073 0.5990 1.2494 
70 0.17 0.17 0.67 1.2781 1.3800 1.0321 84.73 63.5374 0.5610 1.2324 

 

 The values of the factors for each combination of weights were normalized subtracting the 

utopia and dividing the result by the difference between nadir and utopia. The plot of normalized factors 

and their respective weights can be seen in Fig. 10. 

 
Figure 10. 3D scatterplot of the normalized factors and weights 



  

 In order to choose the best combination of weights, it was applied the ratio (R) between the 

entropy (E) and the Mahalanobis’ distance (Mh), that is 𝑅 = 𝐸𝑀ℎ. Mahalanobis’ distance was 

calculated using Minitab software via PCA, which generated three principal components and stored 

this distance. The entropy value was calculated according to Eq. (26), where 𝑤𝑖 represents the 

weight. 

−∑𝑤𝑖 × ln (𝑤𝑖)𝑛
𝑖=1  (26) 

 The maximal value for R was chosen, since it is expected a small value for the Mh and a 

large value for E. Finally, the optimal values for 𝑤1, 𝑤2, and 𝑤3 are 0.3333, 0.3333, and 0.3333. 

For these weights, the optimized values for Wf, V, Ct, and Fr are 0.215, 0.269, 0.536, -0.380, 

respectively. These are coded values, indicating that the uncoded values for the same factors are 

3.243 m/min, 21.904 V, 14.143 mm, and 1.924 Hz, respectively. Therefore, the original variables 

Y, D, RI, and PI are, respectively, equal to 84.14%, 63.28%, 0.5953, 1.2387 according to the model 

developed in this paper. It is an interesting result, since it allows satisfactory yield and values related 

to the geometry of the weld bead 

 

5. Validation experiment 

In order to validate whether the results obtained in the previous section are really practicable, 

a validation experiment was performed and the specimen is shown in Fig. 11. Table 11 shows 

the results obtained with the specifications for the parameters, and the percentage of error 

associated. 

 

 

 

 
Figure 11. Validation specimen 



 
Table 11. Comparative table between predicted and real values for the investigated responses 

Parameters Predicted responses Real responses values 

Wf 3.243 Y 84.14 Y 86.00 
V 21.904 D 63.28 D 66.50 
Ct 14.143 RI 0.5953 RI 0.5034 
Fr 1.924 PI 1.2387 PI 1.3762 

 

Figure 12 shows some microscopical images of the validation specimen, each one of 

them represents one quadrant. 

 

6. Conclusion 

The present paper proposed the application of a methodology based on Poisson regression, 

multivariate constraints to optimize, through normal boundary intersection method, a multiobjective 

problem considering the welding process of aluminum alloy (AA) 6063 T4 tubes used in corona 

rings. 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Validation specimen from the perspective of each quadrants 

  

Although the difficulties of welding aluminum alloys, the paper proved that it is possible to 

obtain satisfactory results through an accurate adjustment of the most significant parameters (or 

factors) and identification of their ranges. Design of experiments, for instance, allowed the 



exploration of distinct scenarios making it easier to interpret the effects of the parameters and their 

interaction. Thirty-one experiments structured according to a face centered composite design with 

4 factors, wire feed rate, arc voltage, contact tip to the workpiece distance and motor frequency, 

was carried out. 

Poisson regression was an important and adequate technique to model the objective 

functions being considered, yield, dilution, reinforcement index, and penetration index. 

Furthermore, since these responses were correlated, they could not be considered separately, and 

the elliptical constrains, and constraints based on simultaneous confidence intervals ensured that 

the multivariate nature of the problem was considered. 

 Additionally, it was possible to observe that using factors to represent the original variables 

and factor mean square errors as objective functions was suitable, since the problem could be solved 

through normal boundary intersection, and it was also confirmed via validation experiment.  

Finally, it was possible to observe that a satisfactory weld bead with large values of 

penetration index, dilution and yield and a small value of reinforcement index, was reached as pre 

specified by the manager of the process. Even though the aluminum welding process stands out due 

to its complexity, its optimization improved the visual quality, reduced costs, and presented a 

uniform and continuous weld bead as expected. 
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Figures

Figure 1

CCD for (a) 2 and (b) 3 factors [31]

Figure 2

CCF for 3 factors



Figure 3

Ellipsoid for the mean, showing the Bonferroni intervals, and for the original data

Figure 4

Semi-automatic welding process structure



Figure 5

Inside view of the specimen and the cylindric piece

Figure 6

Specimen obtained in the runs 01, 07 and 20 of the CCF



Figure 7

Images obtained from run 3, 9, and 15 of the CCF and their geometry measurements

Figure 8

Elliptical region for penetration index and yield means with constraints



Figure 9

Elliptical region for penetration index and reinforcement index means with constraints



Figure 10

3D scatterplot of the normalized factors and weights



Figure 11

Validation specimen



Figure 12

Validation specimen from the perspective of each quadrants


