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A B S T R A C T   

This study proposes a method that combines different machine learning and lean six sigma techniques to cali-
brate cluster analysis through linkage methods. The power quality indexes of substations in Brazil, which are of 
interest to regulatory agencies, are used. The method uses the random forest mixed with rotated factor analysis to 
filter, minimize, and improve the interpretation of latent information. Variability scenarios are created using the 
Monte Carlo simulation to assess the stability of the cluster analysis using the design of experiments and the 
Kappa–Kendall indexes. The Ward method shows a better consistency in all scenarios and a better discriminatory 
power among the clusters. The optimal result is used to predict different scenarios with high levels of variability 
(5, 10, and 15%) by comparing the behaviors of different supervised machine learning techniques for classifi-
cation. The results show that the k-nearest neighbors, support vector classifier, and logistic regression approaches 
can accurately predict, even in scenarios with high variability in the dataset.   

1. Introduction 

Advanced statistical techniques have been widely investigated in 
power quality (PQ) studies [1], promoting the development of new 
technologies and supporting decision making [2]. The advent of 
computation has provided the creation and improvement of mathema-
tical/machine learning approaches in strategic sectors, such as energy 
generation and distribution, thus, impacting the industrial sector 
significantly [1]. Voltage sag is a significant characteristic of PQ distri-
bution [3] and is a variable caused by the short-duration voltage vari-
ation. Additionally, this variable economically impacts the production 
processes because industrial processes have sensitive loads. Several 
existing studies investigated the voltage sag phenomenon [4–8]. 

As an object of study, regulatory agencies consider voltage sag and 
other characteristics to classify PQ substations based on the number of 
voltage sag events. Some studies have used exploratory techniques 
combined with cluster analysis (CA) to group substations based on the 
PQ [1,9]. These studies were based on the regulatory agencies’ need to 

assess and control the PQ. In these studies, specific techniques were 
applied in view of the multivariate characteristics of the data. 

Multivariate techniques were used to analyze a dataset with multiple 
correlated characteristics [10]. Factor analysis (FA), an exploratory 
strategy, is one the most robust techniques. This technique transforms 
several variables into a few common factors, thereby reducing the data 
dimensionality. This technique also allows rotation of factor loads, 
simplifying the load matrix and creating an easy-to-interpret structure 
[11]. Another multivariate strategy widely used in the electricity sector 
is the CA. This technique creates clusters based on the level of similarity 
using techniques such as the hierarchical and non-hierarchical linkage 
methods. Both approaches can recognize patterns of observations based 
on the available characteristics. These strategies were applied in several 
studies on PQ [12–16], highlighting their importance. 

The most used and significant linkage methods are: k-means, Ward, 
single, average, complete, median, centroid, and McQuitty. However, 
many authors arbitrarily employ linkage methods obtaining unsatis-
factory results because linkage methods, which are sensitive to outliers, 
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may present inversions in the ideal formation of clusters [17]. According 
to Pinel [15], the ideal method selection depends on the characteristics 
of the data and its application. Therefore, the best linkage method may 
vary depending on the dataset structure and usage. 

Thus, this study proposes a method that combines different machine 
learning techniques (MLTs), indicators of variability, and agreement 
analysis (Kappa–Kendall) to assist decision making in selecting the 
robust linkage method to be applied based on the dataset. The investi-
gation in this study is conducted using a real dataset, which includes 
several PQ characteristics impacting voltage sag studies. Initially, this 
study uses replicas with small to moderate perturbations (3%), creating 
different scenarios through the Monte Carlo simulations. Using replicas 
is justified by the study conducted by Johnson and Wichern [17], in 
which the authors claimed that using small perturbations in the set is a 
good measure while evaluating the behavior of cluster methods. As a 
strategy to treat the data, MLTs, such as FA, CA (considering eight 
different linkage methods), and random forest regression (RFR), are 
used to initially analyze the most significant characteristics. Addition-
ally, other MLTs are used to predict results confirming the stability of the 
best method. In this study, design of experiments (DOE) is applied to 
create the experimental matrix, which is evaluated using the Kappa and 
Kendall indicators. This technique allows selecting methods with better 
consistency and stability based on international criteria [18]. This 
approach is widely used in the lean six sigma methodology. Finally, the 
proposed approach presents a strategy to identify the best linkage 
method and, consequently, the ideal discrimination between different 
observations for a given set of data (in this context, in the formation of 
substation hard clusters based on voltage sag studies). 

2. Theoretical background 

2.1. Machine learning techniques 

2.1.1. Random forest 
Random forest is based on the combination of many trees, where the 

final decision is obtained considering the decisions of several individual 
trees [19]. This method can be applied to regression problems (using 
RFR) or classification problems (using a random forest classifier (RFC)). 

As the number of trees increases, the limiting value of the general-
ization error is obtained; however, there is no overfitting, which is 
explained by the law of large numbers [19]. However, a small number of 
estimators makes the model unable to perceive the relationships be-
tween the input variables and investigated response. 

2.1.2. Factor analysis 
FA is an exploratory multivariate technique that minimizes the 

repetition of information in observed variables, using of a smaller 
number of latent variables [17]. The factor model can be expressed as 
Eq. (1), where Y is the vector of the observable random variables, μ is the 
vector of population means, L is the factor loading matrix, F is the 
random vector of latent variables, and ε is the error vector or specific 
factors. 

Y(p×1) − μ(p×1) = L(p×m)F(m×1) + ε(p×1) (1)  

Using this technique depends on the adequacy of the data to be inves-
tigated [20]. Thus, strategies such as the Bartlett sphericity test (BST) 
and Kaiser–Meyer–Olkin (KMO) measure of the sampling adequacy 
index should be applied. To use the BST, the data must follow a normal 
multivariate distribution, i.e., the null hypothesis that the correlation 
matrix is equal to the identity matrix is not rejected (χ2 > χ2

α;[p(p− 1)/2])

[21]. Meanwhile, the KMO index analyzes the proportion of common 
variance for the original variables in Eq. (2), where rij and qij represent 
the sample correlation matrices R and anti-image Q, respectively. This 
indicator returns values between 0 and 1, where a KMO index ≥ 0.5 is 
desirable [20,22]. 

KMO =

∑
i∕=jr2

ij
∑

i∕=jr2
ij +

∑
i∕=jq2

ij
(2)  

For adequate data, the parameters of the FA can be estimated. The 
estimation methods include the principal components (PC) and 
maximum likelihood (ML) methods. The PC approach does not require a 
specific probability distribution (such as ML), in addition to producing 
factor scores with independent vectors (null correlation) through lexi-
cographical optimization. This approach estimates the factor loadings 
and specific variances from the spectral decomposition of the sample 
correlation matrix R. In addition to the estimation method, the number 
of factors to be extracted is defined, which uses the Kaiser criterion that 
considers the amount related to eigenvalues ≥ 1 and a percentage of 
total explanation of the variance of at least 80% [17,23]. 

Before extracting the factor scores, the FA technique rotates the axes 
to approximate the factors of the factor loadings. This creates more 
simplified and easily-explained models based on the principle of parsi-
mony established by Thurstone [24] for FA. The varimax method is one 
of the most used approaches with best performances as it uses the T 
orthogonal matrix to maximize the value of Eq. (3). The relationship 
between the ith communality and factor loading under rotation is rep-
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(3)  

After simplification, the rotation of the factor scores is obtained from 
Eq. (4), where F represents the matrix of the latent variables, Z repre-
sents the standardized matrix of the response variables, and L∘ is the 
matrix of rotated factor loads obtained through the varimax method. 

F = Z
[
L∘( L∘T L∘)− 1

]
(4)  

2.1.3. Cluster analysis 
CA uses a strategy that divides and classifies elements of a given 

sample (or population) into groups of similar elements [25]. Thus, ho-
mogeneous information tends to be classified in the same group and, in a 
complementary way, the formed groupings are heterogeneous. Ac-
cording to Mingoti [25], this technique has wide applicability and is 
used in several fields, such as psychology, economics, ecology, and 
geochemistry. The CA is also remarkable in research and data mining 
applications, relating this strategy to other computational tools for 
searching and identifying patterns in datasets [1,15]. 

In addition to distance measurements and techniques, the CA uses 
link metrics to calculate and group the elements based on mathematical 
equations. These methods are sensitive to outlier data [17] and can be 
divided into two categories: hierarchical and non-hierarchical [26]. The 
hierarchical methods are often used in exploratory analyses by per-
forming groupings based on similarity characteristics between elements. 
Table 1 presents the main hierarchical linkage methods (examples of 
different groups A, B, and C, and their elements Xl, Xk and Xm, respec-
tively; nA and nB represent the number of elements for groups A and B, 
respectively, whereas X indicates the mean of the groups) and their 
descriptions and mathematical modeling. 

In contrast, the non-hierarchical methods directly identify the best 
partition of the set based on the number of clusters. This technique has 
two requirements: internal similarity between the elements and sepa-
ration of clusters [25]. The most widespread strategy for this method is 
the k-means method. This technique performs an iterative process, 
assigning a closest average to each item in a cluster, as follows [17]: 
First, the elements are partitioned into k clusters, defining the co-
ordinates of the centroids. From the Euclidean distance, the element to 
be assigned in each cluster is defined, based on the nearest centroid. 
Thus, for each element change in a cluster, the group centroid is 
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recalculated, repeating this step until it is not necessary to perform other 
reassignments. Fig. 1 illustrates the iterative process of the cluster 
formation. 

2.1.4. Other classification techniques 

2.1.4.1. Artificial neural networks. Artificial neural networks (ANNs) 
are formed by neurons (processing units) grouped into input, hidden, 
and output layers [27]. The neurons from the same layer have no 
connection but are connected to all the neurons in the adjacent layers 
through synaptic weights. 

The layers of a network can be arranged in a feedback or feedforward 
manner; in the former, a neuron can be visited more than once. Typi-
cally, a backpropagation algorithm is used to adjust weights [28]. 

2.1.4.2. Support vector machine classification. The support vector ma-
chine classifier (SVC) algorithm separates initially non-separable data 
linearly using kernel functions [29]. The most important algorithm 

parameters are the kernel type, regularization (C), and gamma value. 
The hyperplane is built using a kernel function, which can be a 

linear, sigmoidal, polynomial, or radial basis function [30]. The value of 
C penalizes each misclassification made by the model, while the gamma 
determines the influence of the training observations on the decision 
boundary. 

2.1.4.3. k-nearest neighbors’ algorithm. k-nearest neighbors (kNN) is a 
non-parametric method based on instances [31]. This strategy stores the 
training set, which is used for each new forecast. Thus, the predominant 
class among the k nearest neighbors is identified and assigned to the new 
data. 

While determining the nearest neighbors, distances such as 
Euclidean, Minkowski, and Manhattan are used [32]. It is essential to 
standardize the predictor variables such that the order of magnitude 
does not erroneously influence the decisions for the closest neighbors. 

2.1.4.4. Multinomial logistic regression. The logistic regression tech-
nique is similar to linear regression; however, in the latter, continuous 
variables are considered, and in the former, the response variable rep-
resents a class. Thus, it is necessary to estimate the value of P[c | X], i.e., 
the probability that vector X belongs to class c. When there are more 
than two categories to which an observation belongs with no hierar-
chical order, multinomial logistic regression (MLR) can be used, as 
exemplified by Hosmer et al. [33]. 

2.1.3. Kappa–Kendall indexes 
The Kappa and Kendall indexes are used to analyze the variability 

between discrete variables to determine whether appraisers have a good 
performance. Thus, the Kappa index, calculated using Eq. (5) [34], in-
dicates the ratio between the following values: the proportion in which 
the appraisers agree and maximum proportion in which they can agree. 

K = (Po − P / 1 − P) =

[

1

/

Nknk(nk − 1)

(
∑k

i=1

∑k

j=1
xij − Nknk

)]

−
∑l

j=1
p2

j

(

1 −
∑l

j=1
p2

j

)

(5)  

In Eq. (5), the numbers of appraised items and appraisers are Nk and nk, 
respectively, where k is the number of categories in the adopted scale; Po 
and Pe represent the mean proportions of observed and expected 
agreements, respectively; Xij represents the number of appraisers that 
classify a certain item i to class j. 

Table 
Hierarchical linkage methods.  

Linkage 
method 

Equation Description 

Average d(A,B) =
∑

l∈A

∑

k∈B
(1 /nAnB) d(Xl ,Xk) Consider the distance between 

two clusters as the average 
distance between all pairs of 
objects [21] 

Centroid d(A,B) = (Xl − Xk)
T
(Xl − Xk) Sets distance based on mean 

vectors (known as centroids) 
Complete d(A,B) = max{d(Xl,Xk)} Known as the "farthest 

neighbor method", it considers 
the elements with the least 
similarity to create the groups 

McQuitty d(A,B − C) =

d(Xl ,Xk) + d(Xk,Xm)

2  

Similar to the Average 
method, this strategy uses the 
weighted average to define 
the clusters 

Median d(A,B − C) =

d(Xl ,Xm) + d(Xk,Xm)

2
−

d(Xl,Xk)

4  

It uses the distance matrix to 
calculate the median distance 
of the elements 

Single d(A,B) = min{d(Xl ,Xk)} It seeks to define the similarity 
by the two most similar 
elements 

Ward d(A,B) = [nAnB /nA +

nB ](X l. − X k.)
T
(X l. − X k.)

It joins two clusters to 
minimize the loss of 
information, improving the 
error sum-of-squares (ESS) 
criterion  

Fig. 1. Behavior of the k-means cluster: (a) initial situation; (b) final situation.  
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The Kendall’s coefficient measures the level of agreement between 
and within the appraisers. This can be obtained using Eq. (6), where R2 is 
the sum of squares for classification sums Ri, n is the number of items, tk 
represents the number of ranks tied in each group of ties, and p repre-
sents the number of appraisers. It is noteworthy that m indicates the total 
number of groups of ties. 

W = 12
∑n

i=1
R2

i − 3p2n(n + 1)2

/

p2( n3 − n
)
− p

(
∑m

k=1

(
t3
k − tk

)
)

(6)  

According to AIAG criteria [18], the Kappa index values (K) range be-
tween − 1 and 1, where a value of 1 indicates a perfect agreement, and 
0 indicates that the agreement is the same as that expected by chance. A 
value of − 1, however, indicates an agreement lower than that expected 
by chance. Furthermore, according to Hinkle [35], the Kendall index 
(W) varies between 0 and 1, where 0 and 1 indicate no association and 
perfect association, respectively. 

3. PQ characteristics: Brazilian case study 

A real example of network modeling and fault simulation is inves-
tigated in this study. Seventeen substations, located in the state of 
Espírito Santo in southeastern Brazil, are considered. Fig. 2 depicts the 
geographical locations of these substations serving 90% of the munici-
palities in that state, covering an area of approximately 41,214 km2. The 

data used (from [9]) were collected over 30 months in a research project 
developed by the Federal University of Itajubá and EDP ES Distribution 
Utility. 

Bare conductors in overhead lines and feeders facilitate the occur-
rence of short circuits. During the simulations, the distribution line 
length, voltage-rated feeders, and fault statistics, i.e., the number of 
faults within 100 km per year, are considered. 

Based on the database, 32 characteristics related to the design and 
PQ of each substation are considered, and the total number of sag events 
per year (TNE) is considered as the main variable related to the PQ. The 
values associated with the TNE variable and number of events are ob-
tained through simulations and monitoring, respectively. Measurements 
related to the PQ are acquired considering a period exceeding one year 
to cover different seasonal events influencing the distribution network 
performance. The data are obtained using 30 PQ meters of model SEL 
734 from the Schweitzer Engineering Laboratories. 

Events collected from the secondary power transformers are recor-
ded using the PQ monitors. Considering the 13.8 kV distribution lines, 
the medium-voltage failure rate is obtained by summing the long-and 
short-duration failure rates from the statistics. It is noteworthy that 
the existence of the three-phase type can also be identified, even though 
it presents a lower incidence, compared with a single-phase type. 

Table A.1 in Appendix A lists the nomenclature of all the variables 
considered in this study. Further details regarding data collection and 
substation buses can be found in [9]. 

Fig. 2. Geographic location of substations (State of Espírito Santo – Brazil).  
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4. Robust hard-clustering assessment through machine learning 
approaches 

Technological advent has favored the application and improvement 
of MLT for various purposes, in which the CA is widely used in several 
sectors, mainly in the energy sector. For CA calibration, linkage methods 
are characterized as the main parameters directly impacting the classi-
fication results. Many studies use one or several linkage methods in 
different applications but do not consider sufficient criteria to support 
the selection of these methods. Furthermore, Johnson and Wichern [17] 
inferred that linkage techniques can present cluster inversions in the 
presence of outliers. Thus, it is necessary to verify the behavior of the 
data under different variability conditions. This study proposes a 
methodology that combines different MLTs to assist in analysis and 
decision-making while selecting a robust linkage method, considering 
latent variables and other characteristics of the dataset. For this study, 
the dataset that includes the substation PQ characteristics are investi-
gated (as described in Section 3 and [9]). The software Minitab®, R 
Studio® and algorithms in Python language are used for the analyses. The 
pseudocode of the proposed method is presented in Table A.2 of the 
appendix. 

Step 1: From the original data, the structure of the set must initially 
be verified. Knowing the characteristics of the FA exploratory strategy, 
the number of observations must be greater than the number of vari-
ables. Thus, if necessary, an initial filtering must be performed using the 
RFR strategy. This technique identifies the most important variables for 
the set based on the response of interest (in this case, the TNE). Filtering 
promotes prior creation of a lean dataset and reduction of the data 
dimensionality. 

Step 2: Identifying the most important variables, scenarios with 
small perturbations should be created, as suggested by Johnson and 
Wichern [17]. These scenarios should have their variations applied to a 
small standard deviation in the range of 3%. The Monte Carlo simulation 
creates the replicas. Each of the replicas represents the mean value of 10, 
000 simulations created using different disturbance scenarios. For this 
case study, real data from the Brazilian power distribution company is 
used to develop these replicas. 

Step 3: The next step involves the application of the FA technique 
subject to adequacy tests, such as the BST and KMO index. If the data 
structure is adequate, the FA can be applied. Otherwise, another 
exploratory strategy must be used. 

Step 4: As the data are adequate for the FA application, the number 
of factors to be used in the study is determined using the Kaiser criterion. 
Additionally, factors presenting an explanation percentage of minimum 
80% of the data can be considered. Subsequently, the FA must be applied 
to extract the factor scores. The rotation of factorial loads is fixed in the 
varimax method to meet the principle of parsimony [24,36]. This pro-
cess is repeated for each replica. 

Step 5: Considering the rotated factor scores, it is necessary to apply 
the CA (using different linkage methods) to assess the formation of 
memberships. This planning can be considered as a specific type of DOE, 
which is a multilevel full factorial design with two factors and four 
replicas: an 8-level factor (linkage methods), another factor with 17 
levels (number of observations/substations), and the replicas repre-
senting the different scenarios with 3% disturbances. 

To apply the CA, the number of clusters to be considered must be 
determined initially, which can vary for each objective. This can be 
achieved through the categorization using the Sturges rule [37], where 
the ideal value (kc) is defined by the equation kc = 1 + 3.322log(ζ), 
where ζ is the number of objects in the study (in this case, the number of 
substations). Thereafter, the CA is applied considering each hierarchical 
(single, centroid, complete, average, median, McQuitty, and Ward) and 
non-hierarchical (k-means) linkage method, repeating the application 
for each replica and storing the classification indicated through its 
respective membership. 

Step 6: After extracting and storing the memberships of each linkage 

method (for each replica), the Kappa statistic and Kendall concordance 
coefficient can be calculated. These indicators assess the variability 
within and between linkage methods in categorical results, which are 
the characteristics of the hard-cluster approaches. These indexes indi-
cate the linkage methods (after performing all the treatments) that have 
the best consistency of results under small disturbances. Therefore, the 
most robust method for a given dataset can be identified by checking the 
best Kappa–Kendall results (≥0.9) based on the AIAG [18] classification 
criteria. 

Step 7: Identifying the most robust methods, the quality of the results 
must be verified by comparing the classification results with the 
response of interest, indicating confidence intervals to assess the sepa-
rability and non-overlapping of the groups. For this, the analysis of 
covariance (ANCOVA) approach is used to make an adjustment to the 
analysis of variance (ANOVA), explaining the main variable in terms of a 
concomitant variable impacting the analysis [38]. 

Step 8: Finally, after determining the most consistent method with 
better cluster discrimination, the robustness in predicting different re-
sults is confirmed by comparing some machine learning methods (such 
as kNN algorithm, SVC, ANN, RFC, and MLR). 

Initially, the training is conducted using the original data as the 
“input” (in this study, the substation data from [9]) and the classification 
resulting from the best method as the “output.” Subsequently, the Monte 
Carlo simulation is performed again to create scenarios with higher 
levels of disturbance: 5, 10, and 15% using the original data. The sets of 
scenarios with disturbances are used as test sets for the MLT to predict 
the robust results obtained through the proposed method and determine 
the best technique for forecasting these scenarios. 

5. Application of the proposed method 

5.1. RFR-FA-based approach to substation clustering 

Based on the substations’ PQ data, the variables are initially 
analyzed to define the characteristics that best explain the TNE (main 
variable). This analysis is necessary because the dataset presents a larger 
number of variables in relation to the observations. In Step 1, the RFR 
strategy is applied considering 100 estimators for the method. The 
maximum number of features is 5, because the parameter is assumed to 
have a value of log2 N (N is the number of input variables for the 
problem). 

The random state is a parameter that can vary the precision of the 
RFR as it controls the randomness of the bootstrapping of the samples 
used during the construction of the trees. Thus, the sampling of the 
features is considered when the method seeks the best division in each 
node. This parameter ranges from 0 to 49, storing the R2 score values for 
each of them. Therefore, the model producing the highest R2 score 
(93.84%) is used, indicating that the model can adequately adjust to the 
past data. Fig. 3(a) illustrates all 50 cumulative executions, and Fig. 3(b) 
shows the behavior of the RFR with the best R2 score. 

Based on the algorithm results, the variables exhibiting the highest 
impact on the amount of voltage sags are selected, with respect to the 
constraint of the FA technique, which includes: NEMV, EMVVA, SAIFI1, 
LNE, UNE, ANE, MVRF, STIFI, Xo, FKVAr, EVAHV, MAXA, SAIFI2, 
MAXS, and 3LG. The results show that the NEMV and EMVVA variables 
are the most significant variables, representing the number of events at 
medium voltage and the vulnerability area at medium voltage, respec-
tively. It is noteworthy that these variables are relevant in voltage sag 
studies [1,9]. Therefore, 16 variables are selected (considering the TNE), 
providing an initial reduction of 48.38% in the data dimensionality. 
Fig. 4 illustrates the variance–covariance structure of the filtered vari-
ables, indicating a multivariate behavior between the PQ characteristics. 

To verify the behavior and robustness of the cluster methods, replicas 
must initially be created with small perturbations, as reported by 
Johnson and Wichern [17]. Thus, a disturbance of 3% is applied to the 
data set, creating four scenarios with random values (R1, R2, R3, and R4). 
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Each scenario represents the average value of 10,000 simulations 
created using the Monte Carlo approach. The 3% replica sets (disturbed 
scenarios) are provided in the supplementary material. 

Before applying the FA, the adequacy tests must be performed for the 
filtered data (from the RFR strategy). The Mardia test indicates that the 
data do not represent a normal multivariate distribution; therefore, the 
Bartlett’s sphericity test should not be used (because this test is subject 
to that specific distribution). In the KMO test, it is observed that the 
indicator shows a value of 0.5, indicating that the data are adequate for 
the FA application. 

For this application, the factor numbers must be defined initially. 
Assessing the percentage of factor contributions, 5 factors are verified to 
be ideal for the analysis. This behavior is repeated in both scenarios, 
with values >90% of the data explanation. Therefore, the substations’ 
PQ variables can be represented using 5 factor score vectors, presenting 
a new dimensionality reduction of 68.75% (with a total reduction of 
83.87% of the original dataset). This data structure minimization re-
quires less computational effort. Thereafter, the FA is applied using the 
rotation of the factorial loads by the varimax method, which presents 
load separability, with a communality level of 0.9196 for R1. Table 2 

Fig. 3. Feature importance graph for (a) 50 RFR models and (b) best RFR model (TNE as investigate response).  

Fig. 4. Correlation results from of main variables.  
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presents the rotated loads and communality for R1, indicating the best 
behavior based on the principle of parsimony. Similar behavior is 
observed for the other replicas. The extracted factor scores for R1 are 
presented in Table 3. Owing to the extent of the data, information from 
the other scenarios (R2, R3, and R4) are provided in the supplementary 
material. 

The factor scores (from each replica) represent the original variables, 
indicating the dimensionless and independent values. For the CA 
application, it is necessary to define the number of categories for the 
substations to be classified using the Sturges rule (Step 5). Considering 
the number of substations investigated (observations), kc = 1 + 3.322log 
(17) = 5.087 ≅ 5 is the number of categories. Based on this, the CA must 
be applied to the 8 different linkage methods, storing the memberships 
created for each method in their respective replicas. It should be 
emphasized that there is no need to standardize the variables, as the 
factor scores are dimensionless. Furthermore, the Mahalanobis distance 
is not used because the variables are independent (in this way, the 
Euclidean distance is fixed as a dissimilarity metric). Table 4 presents 
the classifications created for each linkage method and their respective 
replica. Fig. 5 illustrates the dendrograms created using the hierarchical 
methods for replica R1. 

The measurement system analysis can be implemented as a multi-
level full factorial design by considering substations and linkage 
methods as multilevel factors of a DOE (with 4 replicas) and performing 
the experimental analysis with membership values. Analyzing the 
experimental design, there is an adequate model fit with R2 and R2

adj 
values of 81.62 and 75.54%, respectively. Considering a confidence 

interval (CI) of 95% in the ANOVA, it can be observed that a statistically 
significant difference exists between the substations (p-value = 0.000) 
as these substations have distinct PQ characteristics (indicating that the 
experimental design is adequate). Analyzing the cluster method, a sta-
tistically significant difference is found to exist between the linkage 
methods, presenting a high F value (of 73.74) and, consequently, a p- 
value = 0.000. This result indicates that some linkage methods show 
different behaviors through the replications. Therefore, the methods 
present different classifications with cluster inversions under the 
perturbation scenarios. This indicates the need to assess the variability 
and consistency of linkage methods using adequate statistics. 

Based on the previous design, the agreement and Kappa–Kendall 
indicators are calculated considering a CI of 95%. In this analysis, the 
Ward method homogeneously classifies all 17 substations in the four 
scenarios with disturbances, showing 100% agreement in the cluster 
formation. The Median and k-means methods show a degree of agree-
ment of 82.35% in both approaches, with a CI ranging between 56.57 
and 96.2%. The other methods show values below 60%, indicating a low 
consistency. Fig. 6 illustrates the behavior of the agreement values of 
each method and the respective CI for an α value of 0.05. 

In addition to the consistency of the methods, the most suitable 
statistic to assess the level of agreement is the Fleiss’ Kappa Statistics. 
Table 5 presents the Kappa values and other necessary statistics. The 
results verify that the Ward method shows a better degree of agreement 
(K = 1.00), indicating no inversions in the classification of substations in 
the four different scenarios. This verifies the robustness of this approach 
as the scenarios present a 3% disturbance. The k-means method shows 
the second-best behavior (K = 0.882), presenting inversions only for 
clusters 4 and 5. Furthermore, the inversions occur between substations 
s12, s16, and s7, the latter being one of the substations with the highest 
incidences of TNE (nominal voltage of 138 kV). The median method 
obtains a generalized K value of 0.780, indicating instability in the 
classification of clusters 1, 2, and 3, with individual K values of 0.83, 
0.46, and 0.46, respectively. Median values show inversions in the for-
mation of clusters 2 and 3, indicating a difficult classification under 
small perturbations for this data set. Substations s4, s7, and s8 present 
inversions, the last two substations showing the highest number of 
voltage variation incidences causing the sag events. The other linkage 
methods show generalized Kappa values below the criteria recom-
mended by the AIAG [18], indicating a low quality of consistency in the 
results. 

To complement the linkage concordance assessment, it is necessary 
to analyze the Kendall’s agreement coefficient, which presents the de-
gree of agreement between the linkage methods and calculates the W 
indicator for this purpose. Table 6 presents the results required to assess 
this indicator. Based on the results and established criteria [18], the 
Ward method presents an excellent value (W = 1.00). The k-means and 
Median methods also present excellent values (W values of 0.964 and 
0.905, respectively). The McQuitty, Centroid, and Single methods show 
acceptable Kendall’s coefficient of concordance only for this analysis, 
with W values of 0.821, 0.772, and 0.720, respectively. For this indi-
cator, the other methods present inadequate values (W < 0.7). 

5.2. Sensitivity analysis 

Based on the results presented in Section 5.1, it is necessary to 
compare the classification results with the TNE values from the sub-
stations. At this stage, the linkage methods presenting the best simul-
taneous results for the Kappa–Kendall evaluation are considered (K ≥
0.75 and W ≥ 0.9). For this analysis, the original dataset is used to 
perform the entire procedure (RFR-FA and CA), which defines the 
clusters to be investigated. Table 7 presents the FA scores rotated for the 
original data and the memberships of the more stable linkage methods 
(Ward, k-means, and Median). Fig. 7 illustrates the dendrograms for the 
hierarchical methods (k-means does not present this graphic illustra-
tion). The figure shows that the Ward method presents a good 

Table 2 
Rotated factor loads and communalities for R1.  

Variable FA1 FA2 FA3 FA4 FA5 Communality 

MAXA 0.976 0.083 − 0.032 − 0.087 − 0.064 0.9731 
3LG 0.975 0.103 − 0.057 − 0.1 0.003 0.9742 
MAXS 0.974 0.045 − 0.06 − 0.096 − 0.075 0.9684 
STIFI 0.738 − 0.341 − 0.233 − 0.004 − 0.28 0.7938 
MVFR 0.642 0.23 − 0.058 0.185 − 0.484 0.7369 
ANE − 0.007 − 0.912 − 0.254 0.223 − 0.108 0.957 
LNE − 0.03 − 0.906 − 0.283 0.213 − 0.116 0.9607 
UNE − 0.09 − 0.902 − 0.132 0.283 − 0.08 0.9259 
EVAHV − 0.086 − 0.814 0.283 − 0.265 0.219 0.8684 
FKVAr 0.459 − 0.52 − 0.456 − 0.16 − 0.398 0.8723 
NEMV 0.276 − 0.12 − 0.916 0.216 − 0.052 0.9785 
TNE 0.275 − 0.15 − 0.912 0.208 − 0.045 0.9756 
EMVVA − 0.304 − 0.124 − 0.839 0.19 0.302 0.9385 
SAIFI2 − 0.13 − 0.148 − 0.166 0.951 0.057 0.9741 
SAIFI1 − 0.052 − 0.182 − 0.285 0.916 − 0.005 0.957 
Xo − 0.161 0.131 − 0.116 0.062 0.893 0.8586 
Variance 4.3255 3.713 3.0107 2.2064 1.4574 14.7131 
% Var 0.27 0.232 0.188 0.138 0.091 0.9196  

Table 3 
Rotated factor scores for R1.  

Variable FA1 FA2 FA3 FA4 FA5 

TNE 1.9690 − 8.9360 4.3490 − 3.6240 7.5260 
NEMV − 2.0010 9.1100 − 5.0820 3.5180 − 7.6230 
MVFR 0.0910 0.1090 0.0350 0.1520 − 0.2930 
LNE − 0.0120 − 0.2370 − 0.0050 0.0160 − 0.0290 
ANE 0.0030 − 0.2430 0.0160 0.0310 − 0.0130 
UNE 0.0040 − 0.2500 0.0800 0.0890 0.0030 
FKVAr 0.0000 − 0.1040 − 0.1770 − 0.1960 − 0.2300 
SAIFI1 0.0490 0.0130 0.0890 0.4730 0.0230 
SAIFI2 0.0560 0.0100 0.1460 0.5180 0.0650 
STIFI 0.1570 − 0.0880 − 0.0070 − 0.0070 − 0.0500 
EMVVA − 0.1040 0.0390 − 0.3650 − 0.1050 0.1520 
EVAHV 0.0000 0.0000 0.0000 0.0000 0.0000 
3LG 0.2960 − 0.0090 0.0610 0.0320 0.2240 
MAXA 0.2860 − 0.0100 0.0730 0.0420 0.1690 
MAXS 0.2790 − 0.0190 0.0600 0.0280 0.1600 
Xo 0.1550 − 0.0290 − 0.0080 0.0400 0.7390  
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separability between the groups (Fig. 7(a)), with high levels of similarity 
between them. However, the Median method shows difficulties in the 
classifications, associating 76.47% of the substations in only one cluster 
(Fig. 7(b)). This indicates the limitation of this method to correctly 
classify the information in this dataset. It is also verified that the other 
clusters have only one substation for each classification, where sub-
stations s7 (cluster 2), s8 (cluster 3), and s9 (cluster 4) have the highest 
TNE values (426.129, 498.078, and 543.971, respectively). Substation 
s12 (in cluster 5) has the lowest TNE value of 51.209. 

From the classifications, the concomitant variable is defined based 
on the results of the RFR for the application of the ANCOVA. The NEMV 
variable exhibits the largest impact; however, it presents a linear 
dependence on the TNE (Fig. 4, Pearson coefficient of 1.00). Thus, the 
EMVVA is defined as the next most important variable. The selection of 
this variable is practically justified as it considers the vulnerability area 
(in km2) for the occurrence of sags in the substation busbars (caused by 
short circuits). 

Thus, the ANCOVA is performed for the three selected linkage 
methods. Fig. 8 shows that the Ward method (Fig. 8(a)) presents a good 
discrimination between the groups, where the substations with higher 
incidences (s5, s7, s8, s9, and s14) can be differentiated from the 

substations with the best PQ level adequately. Additionally, the analysis 
allows for narrow and precise intervals, considering a 95% confidence 
level. Analyzing the second method with the best consistency result, the 
k-means method (Fig. 8(b)) presents discrimination only for cluster 5, 
indicating an overlap of the CIs for the other groups. This hinders the 
separability of groups and consequently favors the confounding inter-
pretation analysis. Finally, the Median method (Fig. 8(c)) presents a 
narrow CI for cluster 1 (because the method classifies 76.47% of the 
observations in the same group). However, it presents a CI amplitude 
identical to those of the other clusters; because it has only one substation 
in each grouping, the pooled standard deviation is used to calculate the 
intervals. 

From the results of the cluster formation and CI analysis performed 
through the ANCOVA, it is observed that the Ward linkage method 
presents a better behavior and discrimination in the clusters of sub-
stations for this dataset. This result is reinforced through the analysis of 
the Kappa–Kendall indicators, in which only the Ward method presents 
a classification called excellent (K and W > 0.9), according to the in-
ternational criteria for agreement analysis [18]. 

Table 4 
Membership values of each linkage method from all disturbed scenarios.  

S Linkage Membership S Linkage Membership S Linkage Membership 
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 

Aracruz (s1) Average 1 1 1 1 João Neiva (s7) Average 4 5 2 4 Paulista (s13) Average 3 3 1 5 
Centroid 1 1 1 1 Centroid 2 2 2 2 Centroid 1 1 1 1 
Complete 1 1 1 1 Complete 4 3 3 4 Complete 2 5 2 5 
McQuitty 1 1 1 1 McQuitty 3 4 2 4 McQuitty 1 1 1 1 
Median 1 1 1 1 Median 3 2 2 2 Median 1 1 1 1 
Single 1 1 1 1 Single 2 2 2 3 Single 1 1 1 1 
Ward 1 1 1 1 Ward 5 5 5 5 Ward 3 3 3 3 
k-means 1 1 1 1 k-means 5 4 5 5 k-means 4 4 4 4 

Baixo Guandu 
(s2) 

Average 1 1 1 1 Juncado (s8) Average 3 4 1 3 Pinheiros (s14) Average 3 4 1 3 
Centroid 1 1 1 1 Centroid 3 1 1 3 Centroid 1 1 1 1 
Complete 1 1 1 1 Complete 3 4 4 3 Complete 3 1 1 3 
McQuitty 1 1 1 1 McQuitty 4 3 3 3 McQuitty 1 3 1 3 
Median 1 1 1 1 Median 1 3 3 3 Median 1 1 1 1 
Single 1 1 1 1 Single 3 3 3 1 Single 1 1 1 1 
Ward 1 1 1 1 Ward 4 4 4 4 Ward 4 4 4 4 
k-means 2 2 2 2 k-means 5 5 5 5 k-means 5 5 5 5 

Barra do Sahy (s3) Average 2 2 1 2 Linhares A (s9) Average 3 4 3 3 Santa Tereza (s15) Average 2 2 1 2 
Centroid 1 1 1 1 Centroid 4 3 3 4 Centroid 1 1 1 1 
Complete 1 2 2 2 Complete 3 4 4 3 Complete 1 5 2 5 
McQuitty 2 2 1 2 McQuitty 4 3 3 3 McQuitty 2 2 1 2 
Median 1 1 1 1 Median 4 4 4 4 Median 1 1 1 1 
Single 1 1 1 2 Single 4 4 4 1 Single 1 1 1 1 
Ward 2 2 2 2 Ward 4 4 4 4 Ward 2 2 2 2 
k-means 3 3 3 3 k-means 5 5 5 5 k-means 3 3 3 3 

Ecoporanga (s4) Average 3 3 1 1 Linhares C (s10) Average 2 2 1 2 São Francisco 
(s16) 

Average 3 3 1 5 
Centroid 1 1 1 1 Centroid 1 1 1 1 Centroid 1 1 1 1 
Complete 2 1 1 1 Complete 1 2 2 2 Complete 2 2 1 2 
McQuitty 1 1 1 1 McQuitty 2 2 1 2 McQuitty 1 1 1 1 
Median 2 1 1 1 Median 1 1 1 1 Median 1 1 1 1 
Single 1 1 1 1 Single 1 1 1 2 Single 1 1 1 1 
Ward 3 3 3 3 Ward 2 2 2 2 Ward 3 3 3 3 
k-means 4 4 4 4 k-means 3 3 3 3 k-means 4 5 4 4 

Itarana (s5) Average 3 4 1 3 Montanha (s11) Average 3 3 1 5 Suíça (s17) Average 2 2 5 2 
Centroid 1 1 1 1 Centroid 1 1 1 1 Centroid 1 5 5 5 
Complete 3 1 1 3 Complete 2 2 1 2 Complete 1 5 2 5 
McQuitty 1 3 1 3 McQuitty 1 1 1 1 McQuitty 2 2 5 2 
Median 1 1 1 1 Median 1 1 1 1 Median 1 1 1 1 
Single 1 1 1 1 Single 1 1 1 1 Single 1 1 1 5 
Ward 4 4 4 4 Ward 3 3 3 3 Ward 2 2 2 2 
k-means 5 5 5 5 k-means 4 4 4 4 k-means 3 3 3 3 

Jaguaré (s6) Average 1 1 1 1 Nova Venécia 
(s12) 

Average 5 3 4 5 Intentionally left blank 
Centroid 1 1 1 1 Centroid 5 4 4 1 
Complete 1 1 1 1 Complete 5 2 5 2 
McQuitty 1 1 1 1 McQuitty 5 5 4 5 
Median 1 1 1 1 Median 5 5 5 5 
Single 1 1 1 1 Single 5 5 5 4 
Ward 1 1 1 1 Ward 3 3 3 3 
k-means 2 2 2 2 k-means 4 5 4 4  
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5.3. Prediction analysis through machine learning techniques 

After identifying the linkage method with larger robustness and 
discrimination power (Ward method) in Step 8, the proposed method is 

made to perform a search to predict scenarios with other disturbance 
levels (5, 10, and 15%) for verification. The behavior of the results is 
observed in scenarios with significant levels of variability. For this 
purpose, five supervised machine learning classifier methods are 

Fig. 5. Dendrograms of hierarchical linkage methods for R1.  

Fig. 6. Agreement chart for the linkage methods.  
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selected: kNN, SVC, ANN, RFC, and MLR. 
Initially, the complete original dataset (in [9]) is used as the “input” 

for training with 32 variables for 17 observations, and the classification 
vectors performed by the proposed method (RFR-FA) is used as the 
“output” together with the best performance linkage method (Ward), 
described in Section 5.2. The behavior of the data with the cluster 
classification is shown in Fig. 9. This figure shows the main variable 
(TNE) and the four variables that have the largest impact in this study, 

considering the feature importance results. 
To create more complex scenarios, the Monte Carlo simulation is 

again used to create three data with 5, 10, and 15% disturbances. The 
mean value of 10,000 simulations is considered for each scenario. 
Subsequently, these new scenarios are used to verify the accuracy of the 
MLT for correct classification, based on supervised learning, created by 
the proposed model. To generate the results, the algorithms are executed 
50 times, varying the random state value from 0 to 49. Therefore, the 
demonstrated precisions deal with the mean value of 50 executions 
(with the exception of the kNN algorithm, because it does not have this 
randomness parameter). Table 8 presents the level of accuracy of each 
algorithm and their performance evaluations for each scenario. 

The results show that the MLT can learn the behavior of the input 
data, even with complex disturbance levels. Only two methods do not 
show absolute accuracy (RFC and ANN), but they yield good results. 
Furthermore, the MLR method, despite being a simpler strategy, pre-
sents satisfactory results and better performance than those of other 
more sophisticated and difficult-to-implement methods, such as ANN 
and RFC. It is also noteworthy that the kNN, ANN, and SVC methods 
show significantly improved accuracy when the input data are stan-
dardized, which do not occur for the RFC and MLR methods. 

To clarify the application and performance of each method, a brief 
discussion on each MLT used is presented below, describing their 
parameterization:  

• RFC: In this study, 100 estimators are considered, and the maximum 
number of features is 5. Other values are tested, such as a larger 
number of trees and features; however, they do not show improve-
ments or more accurate results;  

• ANN: The multilayer perceptron classifier is used for confirmation 
experiments. Only a hidden layer with 10 neurons is considered, in 
addition to an input layer composed of 31 neurons and an output 
layer with only one processing unit. The learning rate is 0.30. The 
Levenberg–Marquardt optimization is used for the parameterization 
of weights and bias, and the goal train parameter is 0.001;  

• k-NN algorithm: The Euclidean distance (most widespread metric) is 
used to test different numbers of neighbors: k = 1, 3, 5, and 7. The 
best accuracy obtained is k = 1. Therefore, an accuracy of 100% is 
obtained for all test sets, considering 5, 10, and 15% disturbances in 
the original data; 

Table 5 
Fleiss’ Kappa statistics for substation clusters.  

Linkage Cluster Kappa P(vs > 0) Linkage Cluster Kappa P(vs > 0) 

Average 1 0.3211 0.001 Median 1 0.8365 0.000 
2 0.5245 0.000  2 0.4688 0.000 
3 0.1437 0.073  3 0.4688 0.000 
4 − 0.0086 0.535  4 1.0000 0.000 
5 − 0.0086 0.535  5 1.0000 0.000 
Overall 0.2367 0.000  Overall 0.7802 0.000 

Centroid 1 0.7276 0.000 Single 1 0.6078 0.000 
2 1.0000 0.000  2 0.3524 0.000 
3 0.2917 0.002  3 0.4688 0.000 
4 0.2917 0.002  4 0.4688 0.000 
5 0.4688 0.000  5 0.4688 0.000 
Overall 0.6092 0.000  Overall 0.5118 0.000 

Complete 1 0.3885 0.000 Ward 1 1.0000 0.000 
2 0.2940 0.002  2 1.0000 0.000 
3 0.2184 0.014  3 1.0000 0.000 
4 0.2688 0.003  4 1.0000 0.000 
5 0.2444 0.007  5 1.0000 0.000 
Overall 0.3011 0.000  Overall 1.0000 0.000 

McQuitty 1 0.6664 0.000 k-means 1 1.0000 0.000 
2 0.5245 0.000  2 1.0000 0.000 
3 0.3854 0.000  3 1.0000 0.000 
4 0.0646 0.257  4 0.7809 0.000 
5 0.4688 0.000  5 0.7933 0.000 
Overall 0.4976 0.000  Overall 0.8830 0.000 

Bold:overall result of the Kappa indicator. 

Table 6 
Kendall’s coefficient of concordance for substation clusters.  

Linkage Coef. Chi - Sq DF P 

Average 0.6670 42.6902 16 0.0003 
Centroid 0.7721 49.4159 16 0.0000 
Complete 0.5943 38.0369 16 0.0015 
McQuitty 0.8214 52.5672 16 0.0000 
Median 0.9054 57.9469 16 0.0000 
Single 0.7203 46.0987 16 0.0001 
Ward 1.0000 64.0000 16 0.0000 
k-means 0.9644 61.7218 16 0.0000  

Table 7 
Rotated factor scores from the original data set.  

Variable F1 F2 F3 F4 F5 

TNE 2.643 − 10.032 − 5.026 − 4.313 9.753 
NEMV − 2.678 10.208 5.768 4.199 − 9.857 
MVFR 0.098 0.101 − 0.041 0.151 − 0.286 
LNE − 0.011 − 0.243 − 0.007 0.025 − 0.028 
ANE 0.005 − 0.252 − 0.029 0.041 − 0.009 
UNE 0.006 − 0.264 − 0.096 0.096 0.008 
FKVAr − 0.013 − 0.074 0.200 − 0.197 − 0.257 
SAIFI1 0.053 − 0.013 − 0.104 0.464 0.036 
SAIFI2 0.056 − 0.014 − 0.159 0.508 0.070 
STIFI 0.160 − 0.091 − 0.006 0.004 − 0.049 
EMVVA − 0.109 0.053 0.382 − 0.108 0.149 
EVAHV 0.000 0.000 0.000 0.000 0.000 
3LG 0.293 − 0.015 − 0.066 0.026 0.218 
MAXA 0.285 − 0.017 − 0.080 0.038 0.168 
MAXS 0.280 − 0.026 − 0.068 0.024 0.163 
Xo 0.144 − 0.033 0.006 0.037 0.711  
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• SVC: To perform the parameterization of this algorithm, an exhaus-
tive search over specified parameter values for an estimator is per-
formed, such as C (0.1, 1, 10, and 100), gamma (1, 0.1, 0.01, and 
0.001), and finally the selected kernel (RBF, polynomial, and 
sigmoidal). After performing the search, the following values are 
obtained: C = 0.1, gamma = 1, and kernel = polynomial;  

• MLR: In this application, a maximum iteration value of 100 is 
considered, with a solver-type limited-memory Broyden–-
Fletcher–Goldfarb–Shanno optimization algorithm and a tolerance 
of 10− 4. 

6. Conclusions 

Based on the proposed method and application with real data from 
PQ distributions in Brazil, the following conclusions can be drawn:  

• The methodology proves to be suitable for planning and assessing 
different linkage methods, favoring the selection of a robust method 
in disturbance scenarios;  

• The mixed application of the RFR and FA techniques provide filtering 
and minimizing the data dimension by 83.87%, favoring the reduc-
tion of computational effort by creating independent vector scores 
capable of adequately representing the dataset. Additionally, the 
Monte Carlo simulation creates the disturbance scenarios 
adequately, without significantly de-characterizing the var-
iance–covariance structure of the data;  

• The use of the multilevel factorial DOE strategy allows the creation of 
an appropriate experimental design for the study and application of 
the Kappa–Kendall strategy. The DOE promotes the prior analysis of 
the relationship between the linkage methods and observations 
(substations)  

• The assessment of the Kappa–Kendall indicators reveal that the Ward 
linkage method presents a better behavior for this dataset, with K 
and W values equal to 1000. The non-hierarchical k-means method 
presents acceptable results (K = 0.882; W = 0.964), but with diffi-
culties in classifying clusters 4 and 5, presenting inversions in 
memberships. Similarly, the Median approach presents acceptable 
Kappa indices (K = 0.780), presenting difficulty in classifying the 
three substations (s4, s7, and s8). This approach also presents 
acceptable values for Kendall’s coefficient of agreement (W = 0.905)  

• The sensitivity analysis reveals that the Ward method has a good 
level of separability through the ANCOVA analysis, discriminating 
substations with narrow and precise CIs. The k-means method does 
not exhibit the same performance, showing overlapping CIs from 
clusters 1 to 4. The Median method presents acceptable Kappa- 
Kendall indexes but does not perform an adequate grouping, allo-
cating 13 substations in a single cluster. The Median method also 
classifies other substations into single clusters. Therefore, the Ward 
method exhibits the best behavior in scenarios with variability, 
presenting a high level of robustness and better discrimination be-
tween the substation clusters in this dataset; 

Fig. 7. Original data dendrogram from (a) Ward and (b) Median method.  

Fig. 8. 95% confidence interval plot for (a) Ward, (b) k-means and (c) median.  
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• Using other MLTs to predict different scenarios with higher distur-
bance levels (5, 10, and 15%), it is verified that all analyzed super-
vised learning approaches present satisfactory values. However, 
some strategies are better (kNN, SVC, and MLR). It is also noteworthy 
that the MLR presents better results than those of other more com-
plex techniques, such as ANN and RFC. 

Based on the obtained results, the proposed method proves to be 
adequate for evaluating and defining a method with larger robustness in 
different voltage sag scenarios. The method also promotes an optimal 
interpretation of the data structure with a dimensionality reduction. The 
results for this set favor the creation of predictive models capable of 
interpreting the entire treatment performed by the techniques imposed 
in the method. As future proposals, new hard and soft cluster methods 
can be investigated and applied to datasets from other sectors. 

Fig. 9. Behavior of RFR-FA-Ward clusters.  

Table 8 
Accuracy of the algorithms on the test set.  

Machine 
learning 

Simulation of different scenarios Overall 

algorithms 5% 
disturbances 

10% 
disturbances 

15% 
disturbances 

RFC 99.88% 95.76% 90.47% 95.37% 
kNN 100.00% 100.00% 100.00% 100% 
ANN 81.18% 76.70% 58.23% 72.04% 
SVC 100.00% 100.00% 100.00% 100% 
MRL 100.00% 100.00% 100.00% 100%  

Table A.1 
Nomenclature of the variables used in the study.  

HVFR High voltage failure rate NEHV Number of events high 
voltage 

TNE Total number of sag events per 
year 

3LG Three phase to ground short- 
circuit current 

NEMV Number of events in medium 
voltage 

2LG Double phase to ground 
short-circuit current 

MVFR Medium voltage failure rate 1LG Single phase to ground 
short-circuit current 

MNE Monitored number of events L-L Phase to phase short-circuit 
current 

LNE Lower number of events MAXA Maximum asymmetric short 
circuit Current 

ANE Average number of events MAXS Maximum symmetric short 
circuit Current 

UNE Upper number of events MAXG Maximum symmetric short 
circuit Current to Ground 

FKVAr Shunt capacitor KVAr installed 
on the feeders 

R+ Positive sequence resistance 

SAIFI1 System average interruption 
frequency index (without critical 
day) 

X+ Positive sequence reactance 

SAIFI2 System average interruption 
frequency index (with critical 
day) 

Xo Zero sequence reactance 

STIFI System total interruption 
frequency index 

ZBASE Base impedance ohm 

FL Feeders length (km) Zohm Equivalent impedance ohm 
AREA Cluster area (km2) Zpu Per unit impedance 
EMVVA Equivalent medium voltage 

vulnerability area (km) 
EVAHV Equivalent high voltage 

vulnerability area (km) 
BMVAr Shunt capacitor MVar installed 

on the bus bar 
MVASC Short circuit power MVA 

(1000/Zpu on the bus bar)  
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means clustering algorithm: a proposal for the segmentation of electricity 
customers, Electr. Power Syst. Res. 81 (2011) 716–724, https://doi.org/10.1016/j. 
epsr.2010.10.036. 

[15] D. Pinel, Clustering methods assessment for investment in zero emission 
neighborhoods’ energy system, Int. J. Electr. Power Energy Syst. 121 (2020), 
106088, https://doi.org/10.1016/j.ijepes.2020.106088. 
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