Modelagem da rugosidade no torneamento com cerâmica mista alisadora

P. H. S. Campos, J. R. Ferreira, A. P. Paiva e P. P. Balestrassi

No estudo da vida de ferramentas e da rugosidade média das superfícies usinadas pelo processo de torneamento, verifica-se a influência de fatores como velocidade de corte, avanço e profundidade de usinagem. Na análise convencional da influência destes fatores, geralmente cada um deles é estudado isoladamente. Mas a metodologia de projetos de experimentos (DOE), um conjunto de técnicas estatísticas, permite a análise simultânea de todos. Este trabalho trata especificamente do modelamento dos parâmetros de rugosidade R_a, R_z, R_t, R_q e R_y no processo de torneamento do aço ABNT 52100 endurecido, utilizando ferramenta de cerâmica mista revestida com nítreo de titânio, com geometria alisadora.

O desenvolvimento de materiais de elevada dureza e resistência ao desgaste sob altas temperaturas para a produção de ferramentas de corte, em conjunto com o surgimento de máquinas-ferramenta de maiores rigidez e precisão dimensional a altas rotações, tornou possível usinar materiais endurecidos pelo processo de torneamento. Segundo Sales[12], é possível obter rugosidades de 0,2 a 0,3 μm em tornos CNC, valores que correspondem aos obtidos nos processos de retificação.

A substituição do processo de retificação pelo de torneamento em materiais endurecidos traz vantagens como a possibilidade de trabalhar sem fluido de corte, eliminação de etapas no processo de fabricação, maior produtividade e baixo consumo de energia por volume de material usinado.

Na análise convencional da influência da velocidade de corte, da taxa de avanço e da profundidade de usinagem sobre a vida de ferramentas e a rugosidade média das superfícies torneadas, o elevado número de ensaios demanda grande consumo de material de usinagem e de ferramentas de corte, além de muitas horas-máquina. Isso resulta em custos proibitivos de experimentação.
A preocupação em atuar simultaneamente sobre a qualidade e o custo de cada processo obriga as empresas a usarem técnicas menos triviais de planejamento e melhoria da qualidade, a exemplo da modelagem experimental. Modelos matemáticos podem ser construídos a partir da observação e experimentação planejadas. Essa estratégia observacional é conhecida como metodologia de projeto de experimentos (DOE, do inglês design of experiments). Consiste de planejamento capaz de gerar dados apropriados para uma análise estatística eficaz, o que resulta em conclusões válidas e objetivas.

Diversos pesquisadores têm empregado essa metodologia para o estudo da usinabilidade dos materiais. Noordin et al. aplicaram o DOE para descrever o desempenho de ferramentas de metal duro no torneamento de aço ABNT 1045. Choudhury e El-Baradie e Dhavlikar et al. também empregaram a abordagem para modelar a vida de ferramentas utilizadas no torneamento de aços de alta resistência, assim como Allaheddin et al. Todos esses trabalhos objetivam a otimização de variáveis de resposta em processos de usinagem, obtidas a partir de uma pequena, porém eficiente, quantidade de experimentos.

Segundo Galdámez, as técnicas experimentais são pouco difundidas nas empresas brasileiras em virtude da falta de conhecimento estatístico. Com a inovação das ferramentas de geometrias alisadoras, tornou-se possível atingir um acabamento de alta qualidade em operações de torneamento, comparativamente com as ferramentas convencionais.

Em alguns casos, o acabamento também pode ser observado para avanços duas a quatro vezes mais elevados do que os comuns, o que proporciona aumento da produtividade. Quando as informações dos experimentos são analisadas estatisticamente, garante-se que o produto será projetado para superar com robustez as variações decorrentes do próprio processo de fabricação, do meio ambiente e do usuário. A análise estatística também é importante porque uma pequena diferença entre as especificações técnicas de um produto (ou nos níveis de ajuste dos fatores de controle de um processo de fabricação) pode significar ganho ou perda de tempo de produção, de ferramentas e da qualidade do produto. Nas empresas, os ganhos econômicos ou perdas são equivalentes.

Assim, o objetivo principal deste trabalho trata especificamente do modelamento de diversos parâmetros de rugosidade R_a, R_t, R_q, R_u e R_l no processo de torneamento em peças de aço ABNT 52100 endurecido (50 HRC), utilizando ferramenta de cerâmica mista revestida com nitreto de titânio e geometria alisadora.

Desenvolvimento teórico

Desenvolvido entre 1920 e 1930 por Fisher, e posteriormente incrementado por importantes pesquisadores na área de estatística, o projeto de experimentos foi introduzido na indústria química e nos processos industriais de empresas nos Estados Unidos e Europa depois da segunda guerra mundial. Atualmente, as empresas do mundo inteiro buscam aumentar a produtividade com a utilização dessa ferramenta.

De acordo com Montgomery, o DOE consiste no uso de técnicas estatísticas capazes de gerar dados apropriados para uma análise estatística que resulte em conclusões válidas e objetivas. É executado em experimentos nos quais fatores de um processo sob análise são variados simultaneamente, com o objetivo de medir seus efeitos sobre a variável (ou variáveis) de saída de tal processo.

Fatoriais completos correspondem a uma técnica do DOE na qual todas as possíveis combinações de níveis dos fatores experimentais são exercitadas, de modo a cobrir todo o espaço experimental. O número de corridas é igual ao número de níveis elevado ao número de fatores. Para experimentos fatoriais em dois níveis, o número total de corridas N necessárias para avaliar o efeito de k fatores é dado por $N = 2^k$.

Na metodologia DOE, o teste empregado para avaliar a significância dos efeitos das mudanças nos níveis dos fatores, ou dos efeitos das interações entre níveis sobre a saída do processo, é um
Aço endurecido

te teste de hipótese para médias. Na técnica do fatorial completo, o teste utilizado é a análise de variância, ou Anova[1]. Ainda que não haja um modelo teórico único que torne possível a predição da rugosidade, a literatura aponta no sentido de que os parâmetros de corte são determinantes para isso[1].

Cus e Zuperli[2] sugeriram modelos empíricos lineares e exponentiais para a rugosidade da peça como função da velocidade de corte v_c, avanço f e profundidade de usinagem a_v.

A função polinomial de primeira ordem desenvolvida para uma metodologia de projeto de experimento que relaciona uma dada resposta y e com k variáveis de entrada apresenta o formato descrito pela equação 1[3]:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \ldots + \beta k x_k + \varepsilon \]

Onde:

- \(y \) = resposta de interesse;
- \(xi \) = parâmetros de entrada,
- \(\beta_0, \beta_i, \beta_{ij} \) = coeficientes a serem estimados;
- \(k \) = número de parâmetros de entrada considerados.

Procedimento experimental

Máquina, ferramentas, materiais e instrumentos de medição

Para o processo de torneamento desenvolvido neste trabalho, foi utilizado um torno CNC Nardini Logic 175 com potência máxima no eixo-árvore de 5,5 kW, rotação máxima de 4.000 rpm, torre com oito posições e torque máximo de 200 Kgf.m.

As pastilhas são de cerâmica mista (Al_2O_3 + TiC) da fabricante Sandvik, classe GC 6050, revestidas com nitreto de titânio (TiN) e com geometria alisadora ISO CNGA 120408 S01525WH. O suporte da ferramenta é do tipo ISO DCLNL 1616H12, com ângulo de posição de 95°, ângulo de saída de -6°, ângulo de inclinação de -6° e ângulo de folga de 7°. A figura 1 apresenta os raios alisadores da geometria da ponta da ferramenta e o seu efeito combinado com o avanço na rugosidade da peça usinada.

Os corpos de prova de aço ABNT 52100 utilizados nos ensaios tinham dimensões de 49 mm de diâmetro e 50 mm de comprimento. A elevada dureza de 50 HRC foi alcançada nesse aço pelo processo de têmpera por indução. Geralmente, esse material é tratado a uma temperatura de 850°C, seguida de têmpera em óleo, e revenido na faixa de 180 a 250°C. Isso resulta em uma microestrutura de martensita com até 5% de austenita retida. A sua composição química é mostrada na tabela 1.

Tabela 1 – Composição química do aço ABNT 52100 (% em peso)

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Mo</th>
<th>Ni</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teor (%)</td>
<td>1,03</td>
<td>0,23</td>
<td>0,35</td>
<td>1,4</td>
<td>0,04</td>
<td>0,11</td>
<td>0,001</td>
<td>0,01</td>
</tr>
</tbody>
</table>
Aço endurecido

Figura 2 – Posições de leitura da rugosidade nos corpos de prova

Para as medições necessárias, foi utilizado um rugosímetro modelo Mitutoyo, SJ 201. O desgaste da ferramenta foi monitorado por um microscópio óptico Olympus SZ 61 com câmera digital.

Metodologia de ensaios

Foram adotados dois níveis de variação para cada um dos parâmetros de usinagem estudados. A tabela 2 apresenta os parâmetros velocidade corte, avanço e profundidade de usinagem, e seus respectivos níveis de variação. Os níveis foram especificados em função de dados recomendados pelo catálogo do fabricante das ferramentas\(^\text{14}\). Também foi elaborado um planejamento fatorial (três parâmetros e dois níveis) para a realização dos ensaios.

Os ensaios de torneamento foram dimensionados de forma a proporcionar uma maneira precisa de se estudar a influência da velocidade de corte, avanço e profundidade de usinagem na rugosidade \(R_s\), \(R_t\), \(R_n\), \(R_a\) e \(R_y\) da peça usinada, com base na aplicação da metodologia de projeto de experimentos.

<table>
<thead>
<tr>
<th>Tabela 2 – Parâmetros de usinagem utilizados</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARÂMETROS</td>
</tr>
<tr>
<td>Velocidade de corte (v_c) (m/min)</td>
</tr>
<tr>
<td>Avanço (f) (mm/rot)</td>
</tr>
<tr>
<td>Profundidade de corte (a_p) (mm)</td>
</tr>
</tbody>
</table>

A OPÇÃO CERTA PARA SUA ESTAMPARIA E USINAGEM

- Exaustor de Névoa com Aglutinador
- Filtro Eltroestático
- Sistema de Filtragem
- Transportador de Detalhes

Equipamentos fabricados com foco no meio ambiente

- Exaustor de Névoa com Aglutinador
- Filtro Eltroestático
- Sistema de Filtragem
- Transportador de Detalhes

Fone: (11) 5928-5770 / 5928-5034 • Fax: (11) 5929-5098 • kfa@kfa.com.br • www.kfa.com.br
Como critério de troca de ferramenta, foram adotados principalmente valores de rugosidade $R_s < 0.5 \, \mu m$ e desgaste de flanco máximo $V_{\text{finais}} < 0.3 \, mm$, em função do risco de quebra da pastilha de cerâmica. A cada corpo de prova usinado, ele era retirado da máquina para medição das rugosidades. No mesmo momento, a pastilha também era retirada do suporte para monitoramento do desgaste de flanco. As medições de rugosidade foram realizadas sempre quatro vezes nos pontos A, B e C, conforme esquema ilustrado na figura 2 (pág. 50). Após as medições de rugosidade, foi realizada a média aritmética dos valores de rugosidade.

Resultados e discussão

A matriz experimental do projeto fatorial completo com cinco pontos centrais e os resultados da rugosidade R_s e R_t são mostradas na tabela 3. Observa-se que os parâmetros de rugosidade R_s e R_t obtidos nos ensaios para o aço ABNT 52100 foram relativamente baixos, visto que o avanço f variou de 0,2 a 0,4 mm/rot. A rugosidade média R_t, ficou na faixa de 0,15 a 0,5 μm e a rugosidade máxima R_s entre 1 e 2,7 μm. Esses resultados justificam-se pelo efeito alisador da geometria de corte da ferramenta de cerâmica e pela elevada dureza da peça. Cabe salientar que o torno CNC utilizado é de pequeno porte e não apresenta grande rigidez.

A figura 3 (pág. 54) mostra uma comparação dos efeitos principais das condições de corte, velocidade, avanço e profundidade de usinagem sobre as rugosidades R_s e R_t. Percebe-se que o efeito principal do avanço é relativamente superior ao da velocidade de corte e da profundidade de usinagem sobre os parâmetros de rugosidade R_s e R_t sucessivamente. No entanto...
tanto, cabe salientar a importância do estudo do efeito das interações das condições de corte sobre a rugosidade.

A maior influência do avanço deve-se ao maior incremento de seus níveis, de 0,2 a 0,4 mm/rot, o que provoca maior ondulação na superfície da peça. A influência negativa da velocidade de corte deve-se ao aumento da rotação e a um possível aumento da vibração do sistema máquina-ferramenta-peça. As baixas profundidades de usinagem (0,15 a 0,3 mm) utilizadas, tiveram pouca influência na rugosidade da peça, devido à elevada dureza.

A figura 4 (pág. 56) apresenta a análise fatorial para os efeitos principais e para as interações das condições de corte (velocidade corte, avanço e profundidade de usinagem) sobre os parâmetros das rugosidades Rz e Ra. Observa-se no diagrama de Pareto que o avanço, a velocidade de corte e a interação entre velocidade-avanço-profundidade são significativas para a rugosidade Rz. Para a rugosidade Ra, entre-
tanto, apenas o avanço foi o fator significativo.

A tabela 4 apresenta a análise de variância para a rugosidade média R_a, onde se observa que os valores p estão abaixo de 5% (nível de significância estatística) para o avanço, para a velocidade de corte e para interação tripla. Em função da Anova, pode-se constatar que as três condições de corte influenciaram significativamente a rugosidade R_a pelos efeitos principais ou por suas interações.

Percebe-se que o modelo empírico obtido apresenta um excelente ajuste ($R^2 \text{adj} = 97,78\%$) considerando a implementação de todos os termos no modelo. A equação 2 apresenta o modelo matemático obtido, sendo que seus coeficientes levam em consideração as variáveis codificadas.

$$R_a = 0,2826 + 0,0138v_c + 0,1021f - 0,0028a_p - 0,0016v_c$$

A análise de variância (tabela 5) mostrou um valor p significativo ($0,054$) para o teste de curvatura. Isso demonstra que os níveis experimentais escolhidos conduzem a uma resposta próxima à região de ótimo para a rugosidade R_a.

De forma análoga, foi realizada a análise de variância para a rugosidade máxima R_z, com a qual se obtve um modelo empírico com ajuste de $R^2 \text{adj} = 91,28\%$, em que apenas o avanço apresentou influência.

Tabela 4 – Análise para a resposta rugosidade média R_a

<table>
<thead>
<tr>
<th>TERMO</th>
<th>EFEITO</th>
<th>Coef.</th>
<th>SE coef.</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante</td>
<td>0,2826</td>
<td>0,0045</td>
<td>62,27</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>v_c</td>
<td>0,0277</td>
<td>0,0138</td>
<td>0,0045</td>
<td>3,06</td>
<td>0,038</td>
</tr>
<tr>
<td>f</td>
<td>0,2042</td>
<td>0,1021</td>
<td>0,0045</td>
<td>22,50</td>
<td>0</td>
</tr>
<tr>
<td>a_p</td>
<td>-0,0057</td>
<td>-0,0028</td>
<td>0,0045</td>
<td>-0,63</td>
<td>0,561</td>
</tr>
<tr>
<td>V_c^*f</td>
<td>-0,0032</td>
<td>-0,0016</td>
<td>0,0045</td>
<td>-0,36</td>
<td>0,738</td>
</tr>
<tr>
<td>$V_c^*a_p$</td>
<td>-0,0022</td>
<td>-0,0011</td>
<td>0,0045</td>
<td>-0,25</td>
<td>0,816</td>
</tr>
<tr>
<td>f^*a_p</td>
<td>0,0052</td>
<td>0,0026</td>
<td>0,0045</td>
<td>0,58</td>
<td>0,594</td>
</tr>
<tr>
<td>$V_c^*f^*a_p$</td>
<td>0,0327</td>
<td>0,0163</td>
<td>0,0045</td>
<td>3,61</td>
<td>0,023</td>
</tr>
<tr>
<td>C3 P4</td>
<td>0,0197</td>
<td>0,0073</td>
<td>2,70</td>
<td>0,054</td>
<td></td>
</tr>
</tbody>
</table>

$$S = 0,0128 \text{ R - Sq} = 99,26\% \text{ R - Sq (adj)} = 97,78\%$$

Tabela 5 – Análise de variância para R_z

<table>
<thead>
<tr>
<th>Fonte</th>
<th>DF</th>
<th>SEQ SS</th>
<th>ADJ SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efeitos</td>
<td>3</td>
<td>0,085</td>
<td>0,085</td>
<td>0,0283</td>
<td>172,01</td>
<td>0</td>
</tr>
<tr>
<td>Quadrático</td>
<td>3</td>
<td>0</td>
<td>0,0001</td>
<td>0</td>
<td>0,17</td>
<td>0,908</td>
</tr>
<tr>
<td>Interação</td>
<td>1</td>
<td>0,0021</td>
<td>0,0021</td>
<td>0,0021</td>
<td>13,02</td>
<td>0,023</td>
</tr>
<tr>
<td>Curvatura</td>
<td>1</td>
<td>0,0012</td>
<td>0,0012</td>
<td>0,0012</td>
<td>7,2</td>
<td>0,054</td>
</tr>
<tr>
<td>Erro residual</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erro puro</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>0,0891</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
significativa. No entanto, a equação 3 apresenta o modelo obtido pela análise do planejamento fatorial completo com todos os termos do modelo preservando o melhor ajuste.

\[R_1 = 1,8326 + 0,0281v_c + 0,7201f + 0,0218a_p - 0,0058v_c \times (3) + 0,0468v_c \times a_p - 0,0151f \times a_p + 0,0983v_c \times f \times a_p \]

Segundo Montgomery, para que um modelo seja formulado adequadamente, os resíduos não devem ser correlacionados (independentes) e devem ser normalmente distribuídos. Neste trabalho, verificou-se que os resíduos dos modelos obtidos para as rugosidades \(R_a \) e \(R_r \) apresentam distribuições normais.

A figura 5 apresenta as retas de probabilidade normal dos resíduos dos modelos de rugosidades \(R_a \) e \(R_r \). Como os pontos estão distribuídos sobre a reta e o valor \(p \) do teste de normalidade de Anderson Darling foi superior a 5%, pode-se concluir que os dados são normalmente distribuídos. Observou-se também que os resíduos apresentaram-se de forma independente e aleatória. Seguindo assim, pode-se constatar que os modelos encontrados foram satisfatórios.

Os parâmetros de rugosidades \(R_a \), \(R_q \) e \(R_y \) também foram medidos nos experimentos. De posse destes resultados, foi realizada uma análise de correlação entre todos os parâmetros de rugosidade \(R_a \), \(R_q \), \(R_r \), \(R_q \) e \(R_y \). A tabela 6 apresenta essa análise, na qual se observa que todos os parâmetros são correlacionados (valor \(p < 0.05 \)). Como todos eles também apresentam forte grau de correlação (o coeficiente de correlação de Pearson foi superior a 90%), optou-se por não apresentar os demais modelos de rugosidades \(R_q \), \(R_r \) e \(R_y \).

Conclusões

Em função dos resultados obtidos sobre o torneamento do aço ABNT 52100 endurecido realizado com ferramenta de cerâmica com geometria alisadora e utilizando projeto de experimentos (DOE), pode-se concluir que:

- A geometria alisadora da ferramenta propiciou a obtenção de baixas rugosidades \(R_a \), na faixa:
O avanço foi o fator que mais influenciou a rugosidade \(R_a \), seguido pela velocidade de corte e pela interação com a profundidade de usinagem, o que não pode ser descartado no processo.

Os modelos completos obtidos apresentaram excelentes ajustes de explicação dos parâmetros de rugosidade \(R_a \) e \(R_t \), o que demonstra que os fatores velocidade de corte e profundidade de usinagem têm parcela de influência nos parâmetros de rugosidade.

A análise de variância indicou que os níveis das variáveis experimentadas estão em uma região de ótimo para a rugosidade \(R_a \), o que deixa evidente a importância da interação dos fatores \(v_c \) e \(f \) e \(a_p \).

A viabilidade de se trabalhar com altos avanços \(f = 0.4 \text{ mm/rot} \) com cerâmica alisadora em aços endurecidos traz grandes vantagens competitivas para este processo de usinagem.

Referências

6) Galdámez, E. V. C.: Aplicação das técnicas de planejamento e análise de experimentos na melhoria da qualidade de um...

